Advertisement

Differential Evolution for Permutation—Based Combinatorial Problems

  • Godfrey Onwubolu
  • Donald Davendra
Part of the Studies in Computational Intelligence book series (SCI, volume 175)

Abstract

The chapter clarifies the differences between wide-sense combinatorial optimization and strict-sense combinatorial optimization and then presents a number of combinatorial problems encountered in practice. Then overviews of the different permutative-based combinatorial approaches presented in the book are given. The chapter also includes an anatomy of the different permutative-based combinatorial approaches in the book, previously carried out elsewhere to show their strengths and weaknesses.

Keywords

Particle Swarm Optimization Differential Evolution Travel Salesman Problem Travel Salesman Problem Knapsack Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bean, J.: Genetic algorithms and random keys for sequencing and optimization. ORSA, Journal on Computing 6, 154–160 (1994)zbMATHGoogle Scholar
  2. 2.
    Davendra, D., Onwubolu, G.: Flow Shop Scheduling using Enhanced Differential Evolution. In: Proceeding of the 21st European Conference on Modelling and Simulation, Prague, Czech Republic, June 4-5, pp. 259–264 (2007)Google Scholar
  3. 3.
    Davendra, D., Onwubolu, G.: Enhanced Differential Evolution hybrid Scatter Search for Discrete Optimisation. In: Proceeding of the IEEE Congress on Evolutionary Computation, Singapore, September 25-28, pp. 1156–1162 (2007)Google Scholar
  4. 4.
    Lichtblau, D.: Discrete optimization using Mathematica. In: Callaos, N., Ebisuzaki, T., Starr, B., Abe, M., Lichtblau, D. (eds.) World multiconference on systemics, cybernetics and informatics (SCI 2002), International Institute of Informatics and Systemics, vol. 16, pp. 169–174 (2002) (Cited September 1, 2008), http://library.wolfram.comlinfocenter/Conferences/4317Google Scholar
  5. 5.
    Mastolilli, M.: Vehicle routing problems (2008) (Cited September 1, 2008), http://www.idsia.ch/~monaldo/vrp.netGoogle Scholar
  6. 6.
    Onwubolu, G.: Optimisation using Differential Evolution Algorithm. Technical Report TR-2001-05, IAS (October 2001)Google Scholar
  7. 7.
    Onwubolu, G.: Optimizing CNC drilling machine operation: traveling salesman problemdifferential evolution approach. In: Onwubolu, G., Babu, B. (eds.) New optimization techniques in engineering, pp. 537–564. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Onwubolu, G., Clerc, M.: Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization. Int. J. Prod. Res. 42(3), 473–491 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Onwubolu, G., Davendra, D.: Scheduling flow shops using differential evolution algorithm. Eur. J. Oper. Res. 171, 674–679 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  11. 11.
    Su, C., Fu, H.: A simulated annealing heuristic for robotics assembly using the dynamic pick-and-place model. Prod. Plann. Contr. 9(8), 795–802 (1998)CrossRefGoogle Scholar
  12. 12.
    Su, C., Fu, H., Ho, L.: A novel tabu search approach to find the best placement sequence and magazine assignment in dynamic robotics assembly. Prod. Plann. Contr. 9(6), 366–376(1998)Google Scholar
  13. 13.
    Storn, R.: Differential evolution design of an Rfilter with requirements for magnitude and group delay. In: IEEE international conference on evolutionary computation (ICEC 1996), pp. 268–273. IEEE Press, New York (1996)CrossRefGoogle Scholar
  14. 14.
    Storn, R.: On the usage of differential evolution for function optimization. In: NAFIPS, Berkeley, pp. 519–523 (1996)Google Scholar
  15. 15.
    Storn, R.: System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 3(1), 22–34 (1999)CrossRefGoogle Scholar
  16. 16.
    Storn, R.: Designing digital filters with differential evolution. In: Come, D., et al. (eds.), pp. 109–125 (1999)Google Scholar
  17. 18.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 19.
    Tabucanon, M., Hop, N.: Multiple criteria approach for solving feeder assignment and assembly sequencing problem in PCB assembly. Prod. Plann. Contr. 12(8), 736–744 (2001)CrossRefGoogle Scholar
  19. 20.
    Tasgetiren, M., Sevkli, M., Liang, Y.-C., Gencyilmaz, G.: Particle Swarm Optimization Algorithm for the Single Machine Total Weighted Tardiness Problem. In: The Proceeding of the World Congress on Evolutionary Computation, CEC 2004, pp. 1412–1419 (2004)Google Scholar
  20. 21.
    Walas, R., Askin, R.: An algorithm for NC turret punch tool location and hit sequencing. IIE Transactions 16(3), 280–287 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Godfrey Onwubolu
    • 1
  • Donald Davendra
    • 2
  1. 1.Knowledge Management & Mining, Inc.Richmond HillCanada
  2. 2.Faculty of Applied InformaticsTomas Bata Univerzity in ZlinZlinCzech Republic

Personalised recommendations