Direct Attacks Using Fake Images in Iris Verification

  • Virginia Ruiz-Albacete
  • Pedro Tome-Gonzalez
  • Fernando Alonso-Fernandez
  • Javier Galbally
  • Julian Fierrez
  • Javier Ortega-Garcia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5372)

Abstract

In this contribution, the vulnerabilities of iris-based recognition systems to direct attacks are studied. A database of fake iris images has been created from real iris of the BioSec baseline database. Iris images are printed using a commercial printer and then, presented at the iris sensor. We use for our experiments a publicly available iris recognition system, which some modifications to improve the iris segmentation step. Based on results achieved on different operational scenarios, we show that the system is vulnerable to direct attacks, pointing out the importance of having countermeasures against this type of fraudulent actions.

Keywords

Biometrics iris recognition direct attacks fake iris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A., Ross, A., Pankanti, S.: Biometrics: A tool for information security. IEEE Trans. on Information Forensics and Security 1, 125–143 (2006)CrossRefGoogle Scholar
  2. 2.
    Jain, A., Bolle, R., Pankanti, S. (eds.): Biometrics - Personal Identification in Networked Society. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  3. 3.
    Monro, D., Rakshit, S., Zhang, D.: DCT-Based iris recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(4), 586–595 (2007)CrossRefGoogle Scholar
  4. 4.
    Schneier, B.: The uses and abuses of biometrics. Communications of the ACM 48, 136 (1999)CrossRefGoogle Scholar
  5. 5.
    Ratha, N., Connell, J., Bolle, R.: An analysis of minutiae matching strength. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 223–228. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Soutar, C., Gilroy, R., Stoianov, A.: Biometric system performance and security. In: Proc. IEEE Workshop on Automatic Identification Advanced Technologies, AIAT (1999)Google Scholar
  7. 7.
    Fierrez, J., Ortega-Garcia, J., Torre-Toledano, D., Gonzalez-Rodriguez, J.: BioSec baseline corpus: A multimodal biometric database. Pattern Recognition 40(4), 1389–1392 (2007)CrossRefMATHGoogle Scholar
  8. 8.
    Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (2002)Google Scholar
  9. 9.
    Masek, L., Kovesi, P.: Matlab source code for a biometric identification system based on iris patterns. The School of Computer Science and Software Engineering, The University of Western Australia (2003)Google Scholar
  10. 10.
    Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14, 21–30 (2004)CrossRefGoogle Scholar
  11. 11.
    Daugman, J.: Anti spoofing liveness detection, http://www.cl.cam.ac.uk/users/jgd1000/countermeasures.pdf
  12. 12.
    Pacut, A., Czajka, A.: Aliveness detection for iris biometrics. In: Proc. IEEE Intl. Carnahan Conf. on Security Technology, ICCST, pp. 122–129 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Virginia Ruiz-Albacete
    • 1
  • Pedro Tome-Gonzalez
    • 1
  • Fernando Alonso-Fernandez
    • 1
  • Javier Galbally
    • 1
  • Julian Fierrez
    • 1
  • Javier Ortega-Garcia
    • 1
  1. 1.Biometric Recognition Group - ATVS Escuela Politecnica SuperiorUniversidad Autonoma de MadridMadridSpain

Personalised recommendations