Twelve Definitions of a Stable Model

  • Vladimir Lifschitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5366)

Abstract

This is a review of some of the definitions of the concept of a stable model that have been proposed in the literature. These definitions are equivalent to each other, at least when applied to traditional Prolog-style programs, but there are reasons why each of them is valuable and interesting. A new characterization of stable models can suggest an alternative picture of the intuitive meaning of logic programs; or it can lead to new algorithms for generating stable models; or it can work better than others when we turn to generalizations of the traditional syntax that are important from the perspective of answer set programming; or it can be more convenient for use in proofs; or it can be interesting simply because it demonstrates a relationship between seemingly unrelated ideas.

Keywords

Doyle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann, San Mateo (1988)CrossRefGoogle Scholar
  2. 2.
    Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: Working Notes of the AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning (2003), http://www.krlab.cs.ttu.edu/papers/download/bg03.pdf
  3. 3.
    Bidoit, N., Froidevaux, C.: Minimalism subsumes default logic and circumscription in stratified logic programming. In: Proc. LICS 1987, pp. 89–97 (1987)Google Scholar
  4. 4.
    Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)CrossRefGoogle Scholar
  5. 5.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Fages, F.: A fixpoint semantics for general logic programs compared with the well–supported and stable model semantics. New Generation Computing 9, 425–443 (1991)CrossRefMATHGoogle Scholar
  7. 7.
    Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of Logic Programming 5, 45–74 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 372–379 (2007)Google Scholar
  9. 9.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 119–131. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Fine, K.: The justification of negation as failure. In: Proceedings of the Eighth International Congress of Logic, Methodology and Philosophy of Science, pp. 263–301. North Holland, Amsterdam (1989)CrossRefGoogle Scholar
  11. 11.
    Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  13. 13.
    Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi, P. (eds.) Proceedings of International Conference on Logic Programming (ICLP), pp. 579–597 (1990)Google Scholar
  14. 14.
    Gelfond, M.: On stratified autoepistemic theories. In: Proceedings of National Conference on Artificial Intelligence (AAAI), pp. 207–211 (1987)Google Scholar
  15. 15.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse, pp. 42–56 (1930)Google Scholar
  16. 16.
    Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set programming. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 472–479 (2008)Google Scholar
  17. 17.
    Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 503–508 (2005)Google Scholar
  18. 18.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25, 369–389 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lifschitz, V.: On the declarative semantics of logic programs with negation. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 177–192. Morgan Kaufmann, San Mateo (1988)CrossRefGoogle Scholar
  21. 21.
    Lin, F., Reiter, R.: Rules as actions: A situation calculus semantics for logic programs. Journal of Logic Programming 31, 299–330 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. In: Proceedings of National Conference on Artificial Intelligence (AAAI), pp. 112–117 (2002)Google Scholar
  23. 23.
    Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157, 115–137 (2004), http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised.pdf MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lin, F., Zhou, Y.: From answer set logic programming to circumscription via logic of GK. In: Proceedings of International Joint Conference on Artificial Intelligence, IJCAI (2007)Google Scholar
  25. 25.
    Lin, F.: A Study of Nonmonotonic Reasoning. PhD thesis, Stanford University (1991)Google Scholar
  26. 26.
    Marek, V., Truszczyński, M.: Stable semantics for logic programs and default theories. In: Proc. North American Conf. on Logic Programming, pp. 243–256 (1989)Google Scholar
  27. 27.
    McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 463–502. Edinburgh University Press, Edinburgh (1969)Google Scholar
  28. 28.
    McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39, 171–172 (1980)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Artificial Intelligence 26(3), 89–116 (1986)MathSciNetCrossRefGoogle Scholar
  30. 30.
    McDermott, D., Doyle, J.: Nonmonotonic logic I. Artificial Intelligence 13, 41–72 (1980)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    McDermott, D.: Nonmonotonic logic II: Nonmonotonic modal theories. Journal of ACM 29(1), 33–57 (1982)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Moore, R.: Semantical considerations on nonmonotonic logic. Artificial Intelligence 25(1), 75–94 (1985)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  34. 34.
    Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic programs with nested expressions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS, vol. 2258, pp. 306–320. Springer, Heidelberg (2001)Google Scholar
  35. 35.
    Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix, J., Pereira, L., Przymusinski, T. (eds.) NMELP 1996. LNCS (LNAI), vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  36. 36.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Reiter, R.: Circumscription implies predicate completion (sometimes). In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 418–420 (1982)Google Scholar
  38. 38.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)MATHGoogle Scholar
  39. 39.
    Saccá, D., Zaniolo, C.: Stable models and non-determinism in logic programs with negation. In: Proceedings of ACM Symposium on Principles of Database Systems (PODS), pp. 205–217 (1990)Google Scholar
  40. 40.
    van Emden, M., Clark, K.: The logic of two-person games. In: Micro-PROLOG: Programming in Logic, pp. 320–340. Prentice-Hall, Englewood Cliffs (1984)Google Scholar
  41. 41.
    van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming language. Journal of ACM 23(4), 733–742 (1976)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded semantics for general logic programs. In: Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Austin, Texas, March 21-23, 1988, pp. 221–230. ACM Press, New York (1988)CrossRefGoogle Scholar
  43. 43.
    Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)MathSciNetMATHGoogle Scholar
  44. 44.
    Van Gelder, A.: Negation as failure using tight derivations for general logic programs. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 149–176. Morgan Kaufmann, San Mateo (1988)CrossRefGoogle Scholar
  45. 45.
    Wallace, M.: Tight, consistent and computable completions for unrestricted logic programs. Journal of Logic Programming 15, 243–273 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vladimir Lifschitz
    • 1
  1. 1.Department of Computer SciencesUniversity of Texas at AustinUSA

Personalised recommendations