Termination Analysis of CHR Revisited

  • Paolo Pilozzi
  • Danny De Schreye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5366)


Today, two distinct direct approaches to prove termination of CHR programs exist. The first approach, by T. Frühwirth, proves termination of CHR programs without propagation. The second, by Voets et al., deals with programs that contain propagation. It is however less powerful on programs without propagation. In this paper, we present new termination conditions that are strictly more powerful than those from previous approaches and that are also applicable to a new class of programs. Furthermore, we present a new representation for CHR states for which size-decreases between consecutive states correspond to termination. Both contributions are linked: our termination conditions correspond to the existence of a well-founded order on the new state representation, which decreases for consecutive computation states.


Constraint Handling Rules Termination Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frühwirth, T.: Theory and practice of constraint handling rules. J. Logic Programming 37(1–3), 95–138 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abdennadher, S., Marte, M.: University course timetabling using constraint handling rules. Applied Artificial Intelligence 14(4), 311–325 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Frühwirth, T., Brisset, P.: Optimal placement of base stations in wireless indoor telecommunication. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 476–480. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Frühwirth, T.: Proving termination of constraint solver programs. In: New Trends in Constraints, pp. 298–317 (2000)Google Scholar
  5. 5.
    Voets, D., Pilozzi, P., De Schreye, D.: A new approach to termination analysis of constraint handling rules. In: Pre-proceedings of LOPSTR 2008, pp. 28–42 (2008)Google Scholar
  6. 6.
    Schrijvers, T.: Analyses, optimizations and extensions of constraint handling rules: Ph.D summary. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 435–436. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    De Schreye, D., Decorte, S.: Termination of logic programs: the never-ending story. J. of Logic Programming 19–20, 199–260 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dershowitz, N.: Termination of rewriting. J. of Symbolic Computation 3(1–2), 69–116 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Abdennadher, S.: Operational semantics and confluence of constraint propagation rules. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 252–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Duck, G., Stuckey, P., García de la Banda, M., Holzbaur, C.: The refined operational semantics of constraint handling rules. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paolo Pilozzi
    • 1
  • Danny De Schreye
    • 1
  1. 1.Dept. of Computer ScienceK.U.LeuvenBelgium

Personalised recommendations