Engineering an Incremental ASP Solver

  • Martin Gebser
  • Roland Kaminski
  • Benjamin Kaufmann
  • Max Ostrowski
  • Torsten Schaub
  • Sven Thiele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5366)

Abstract

Many real-world applications, like planning or model checking, comprise a parameter reflecting the size of a solution. In a propositional formalism like Answer Set Programming (ASP), such problems can only be dealt with in a bounded way, considering one problem instance after another by gradually increasing the bound on the solution size. We thus propose an incremental approach to both grounding and solving in ASP. Our goal is to avoid redundancy by gradually processing the extensions to a problem rather than repeatedly re-processing the entire (extended) problem. We start by furnishing a formal framework capturing our incremental approach in terms of module theory. In turn, we take advantage of this framework for guiding the successive treatment of program slices during grounding and solving. Finally, we describe the first integrated incremental ASP system, iclingo, and provide an experimental evaluation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Kautz, H., Selman, B.: Planning as satisfiability. In: Proc. of ECAI 1992, pp. 359–363. Wiley, Chichester (1992)Google Scholar
  3. 3.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence 153(1-2), 49–104 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. on AI 3(6), 193–210 (1998)Google Scholar
  6. 6.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Proc. of IJCAI 2007. AAAI Press, Menlo Park (2007)Google Scholar
  7. 7.
  8. 8.
    Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proc. of ECAI 2006, pp. 412–416. IOS Press, Amsterdam (2006)Google Scholar
  9. 9.
    Lifschitz, V., Turner, H.: Splitting a logic program. In: Proc. of ICLP, pp. 23–37. MIT Press, Cambridge (1994)Google Scholar
  10. 10.
    Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial evaluation. Journal of Logic Programming 40(1), 1–46 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 87–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer Science 89(4) (2003)Google Scholar
  15. 15.
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Gebser
    • 1
  • Roland Kaminski
    • 1
  • Benjamin Kaufmann
    • 1
  • Max Ostrowski
    • 1
  • Torsten Schaub
    • 1
  • Sven Thiele
    • 1
  1. 1.Institut für InformatikUniversität PotsdamPotsdamGermany

Personalised recommendations