Detecting Inconsistencies in Large Biological Networks with Answer Set Programming

  • Martin Gebser
  • Torsten Schaub
  • Sven Thiele
  • Björn Usadel
  • Philippe Veber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5366)

Abstract

We introduce an approach to detecting inconsistencies in large biological networks by using Answer Set Programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on Answer Set Programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies in the data by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joyce, A., Palsson, B.: The model organism as a system: Integrating ‘omics’ data sets. Nature Reviews Molecular Cell Biology 7(3), 198–210 (2006)CrossRefGoogle Scholar
  2. 2.
    Klamt, S., Stelling, J.: Stoichiometric and constraint-based modelling. In: System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 73–96. MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 3.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7(3-4), 601–620 (2000)CrossRefGoogle Scholar
  4. 4.
    Siegel, A., Radulescu, O., Le Borgne, M., Veber, P., Ouy, J., Lagarrigue, S.: Qualitative analysis of the relation between DNA microarray data and behavioral models of regulation networks. Biosystems 84(2), 153–174 (2006)CrossRefGoogle Scholar
  5. 5.
    Gutierrez-Rios, R., Rosenblueth, D., Loza, J., Huerta, A., Glasner, J., Blattner, F., Collado-Vides, J.: Regulatory network of Escherichia coli: Consistency between literature knowledge and microarray profiles. Genome Research 13(11), 2435–2443 (2003)CrossRefGoogle Scholar
  6. 6.
    Soulé, C.: Graphic requirements for multistationarity. Complexus 1(3), 123–133 (2003)CrossRefGoogle Scholar
  7. 7.
    Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Soulé, C.: Mathematical approaches to differentiation and gene regulation. Comptes Rendus Biologies 329, 13–20 (2006)CrossRefGoogle Scholar
  11. 11.
    Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Advances in Applied Mathematics (to appear, 2008)Google Scholar
  12. 12.
    Richard, A., Comet, J.: Necessary conditions for multistationarity in discrete dynamical systems. Discrete Applied Mathematics 155(18), 2403–2413 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kuipers, B.: Qualitative reasoning: Modeling and simulation with incomplete knowledge. MIT Press, Cambridge (1994)Google Scholar
  14. 14.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Syrjänen, T.: Lparse 1.0 user’s manual, http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
  16. 16.
    Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical Computer Science 85, 112–133 (2005)MathSciNetMATHGoogle Scholar
  17. 17.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 260–265. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.: Conflict-driven disjunctive answer set solving. In: Proceedings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 422–432. AAAI Press, Menlo Park (2008)Google Scholar
  20. 20.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. Freeman and Co., New York (1979)MATHGoogle Scholar
  21. 21.
    Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gebser, M., Schaub, T., Thiele, S.: GrinGo: A new grounder for answer set programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 266–271. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Veber, P., Le Borgne, M., Siegel, A., Lagarrigue, S., Radulescu, O.: Complex qualitative models in biology: A new approach. Complexus 2(3-4), 140–151 (2004)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Gelfond, M., Lifschitz, V., Przymusinska, H., Truszczyński, M.: Disjunctive defaults. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR 1991)., pp. 230–237. Morgan Kaufmann, San Francisco (1991)Google Scholar
  26. 26.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12(1-2), 53–87 (1994)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Lierler, Y.: cmodels – SAT-based disjunctive answer set solver. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 447–451. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Guziolowski, C., Veber, P., Le Borgne, M., Radulescu, O., Siegel, A.: Checking consistency between expression data and large scale regulatory networks: A case study. Journal of Biological Physics and Chemistry 7(2), 37–43 (2007)CrossRefGoogle Scholar
  31. 31.
    Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of complexity). In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing (STOC 1982), pp. 255–260. ACM Press, New York (1982)CrossRefGoogle Scholar
  33. 33.
    Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)MathSciNetMATHGoogle Scholar
  34. 34.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.: Unfolding partiality and disjunctions in stable model semantics. ACM Transactions on Computational Logic 7(1), 1–37 (2006)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Guelzim, N., Bottani, S., Bourgine, P., Képès, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nature Genetics 31, 60–63 (2002)CrossRefGoogle Scholar
  38. 38.
    Sudarsanam, P., Iyer, V., Brown, P., Winston, F.: Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 97(7), 3364–3369 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Gebser
    • 1
  • Torsten Schaub
    • 1
  • Sven Thiele
    • 1
  • Björn Usadel
    • 2
  • Philippe Veber
    • 1
  1. 1.Institute for InformaticsUniversity of PotsdamPotsdamGermany
  2. 2.Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany

Personalised recommendations