Fuzzy System Methods in Modeling Gene Expression and Analyzing Protein Networks

  • Shihua Zhang
  • Rui-Sheng Wang
  • Xiang-Sun Zhang
  • Luonan Chen
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 242)


Recent technological advances in high-throughput data collection allow for computational study of complex biological systems on the scale of the whole cellular genome and proteome. Gene regulatory network is expected to be one of suitable tools for interpreting the resulting large amount of genomic and proteomic data sets. A huge number of methods have been developed for extracting gene networks from such data. Fuzzy logic which plays an important role in multiple disciplines is a framework bringing together physics-based models with more logical methods to build a foundation for multi-scale bio-molecular network models. Biological relationships in the best-fitting fuzzy gene network models can successfully recover direct and indirect interactions from previous knowledge to result in more biological insights about regulatory and transcriptional mechanism. In this chapter, we survey a class of models based on fuzzy logic with particular applications in reconstructing gene regulatory networks. We also extend our survey of the application of fuzzy logic methods to highly related topics such as protein interaction network analysis and microarray data analysis. We believe that fuzzy logic-based models would take a key step towards providing a framework for integrating, analyzing and modeling complex biological systems.


Fuzzy Logic Fuzzy Rule Gene Regulatory Network Fuzzy Cluster Membership Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: Locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021–1023 (2006)CrossRefGoogle Scholar
  2. 2.
    Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the boolean network model. In: Pacific Symposium on Biocomputing, vol. 4, pp. 17–28 (1999)Google Scholar
  3. 3.
    Belacel, N., Cuperlovic-Culf, M., Laflamme, M., Ouellette, R.: Fuzzy j-means and vns methods for clustering genes from microarray data. Bioinformatics 20, 1690–1701 (2004)CrossRefGoogle Scholar
  4. 4.
    Bezdak, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)Google Scholar
  5. 5.
    Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4, 759–771 (1991)CrossRefGoogle Scholar
  6. 6.
    Combs, W.E., Andrews, J.E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Syst. 6, 1–11 (1998)CrossRefGoogle Scholar
  7. 7.
    Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech., P09008 (2005)Google Scholar
  8. 8.
    Datta, S., Sokhansanj, B.A.: Accelerated search for biomolecular network models to interpret high-throughput experimental data. Bioinformatics 8, 258 (2007)CrossRefGoogle Scholar
  9. 9.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002)CrossRefGoogle Scholar
  10. 10.
    Dembele, D., Kastner, P.: Fuzzy c-means method for clustering microarray data. Bioinformatics 19(8), 973–980 (2003)CrossRefGoogle Scholar
  11. 11.
    Di Gesu, V., Giancarlo, R., Lo Bosco, G., Raimondi, A., Scaturro, D.: GenClust: a genetic algorithm for clustering gene expression data. BMC Bioinformatics 6, 289 (2005)CrossRefGoogle Scholar
  12. 12.
    Du, P., Gong, J., Wurtele, E.S., Dickerson, J.A.: Modeling gene expression networks using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part B 35(6), 1351–1359 (2005)CrossRefGoogle Scholar
  13. 13.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)CrossRefGoogle Scholar
  14. 14.
    Fu, L., Medico, E.: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8(3) (2007)Google Scholar
  15. 15.
    Futschik, M.E., Charlisle, B.: Noise robust clustering of gene expression time-course data. Journal of Bioinformatics and Computational Biology 3(4), 965–988 (2005)CrossRefGoogle Scholar
  16. 16.
    Gasch, A.P., Eisen, M.B.: Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome. Biol. 3(11), 1–22 (2002)CrossRefGoogle Scholar
  17. 17.
    Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)CrossRefGoogle Scholar
  18. 18.
    Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks. Bioinformatics 19, 2271–2282 (2003)CrossRefGoogle Scholar
  19. 19.
    Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18), 2291–2297 (2006)CrossRefGoogle Scholar
  20. 20.
    Kim, S.Y., Lee, J.W., Bae, J.S.: Effect of data normalization on fuzzy clustering of DNA microarray data. BMC Bioinformatics 7(134) (2006)Google Scholar
  21. 21.
    Klir, G.J., Yuan, B. (eds.): Fuzzy sets, fuzzy logics and fuzzy systems — selected papers by lotfi a zadeh. World Scientific, Singapore (1996)Google Scholar
  22. 22.
    Kosko, B.: Global stability of generalized additive fuzzy systems. Transactions on Systems, Man, and Cybernetics 28(3), 441–452 (1998)CrossRefGoogle Scholar
  23. 23.
    Linden, R., Bhaya, A.: Evolving fuzzy rules to model gene expression. BioSystems 88, 76–91 (2007)CrossRefGoogle Scholar
  24. 24.
    Ma, P.C.H., Chan, K.C.C.: Inference of gene regulatory networks from microarray data: a fuzzy logic approach. In: Proceedings of Asia-Pacific Bioinformatics Conference, pp. 17–26 (2006)Google Scholar
  25. 25.
    Maraziotis, I., Dragomir, A., Bezerianos, A.: Recurrent neuro-fuzzy network models for reverse engineering gene regulatory interactions. In: Berthold, M.R., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds.) CompLife 2005. LNCS (LNBI), vol. 3695, pp. 24–34. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Physical Review E 77, 016107 (2008)CrossRefGoogle Scholar
  27. 27.
    Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B. 38, 321–330 (2004)CrossRefGoogle Scholar
  28. 28.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  29. 29.
    Pascual-Marqui, R.D., Pascual-Montano, A.D., Kochi, K., Carazo, J.M.: Smoothly distributed fuzzy c-means: a new self-organizing map. Pattern Recognition 34, 2395–2402 (2001)zbMATHCrossRefGoogle Scholar
  30. 30.
    Qu, Y., Xu, S.: Supervised cluster analysis for microarray data based on multivariate Gaussian mixture. Bioinformatics 20, 1905–1913 (2004)CrossRefGoogle Scholar
  31. 31.
    Ram, R., Chetty, M., Dix, T.I.: Fuzzy model for gene regulatory network. In: IEEE Congress on Evolutionary Computation, pp. 1450–1455 (2006)Google Scholar
  32. 32.
    Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett. 93, 218701 (1993)CrossRefGoogle Scholar
  33. 33.
    Ressom, H., Natarajanb, P., Varghesea, R.S., Musavib, M.T.: Applications of fuzzy logic in genomics. Fuzzy Sets and Systems 152, 125–138 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Ressom, H., Reynolds, R., Varghese, R.S.: Increasing the efficiency of fuzzy logic-based gene expression data analysis. Physiol. Genomics 13, 107–117 (2003)Google Scholar
  35. 35.
    Ressom, H., Wang, D., Varghese, R.S., Reynolds, R.: Fuzzy logic-based gene regulatory network. In: IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1210–1215 (2003)Google Scholar
  36. 36.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  37. 37.
    Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)CrossRefGoogle Scholar
  38. 38.
    Sehgal, M.S.B., Gondal, I., Dooley, L.: CF-GeNe: Fuzzy framework for robust gene regulatory network inference. Journal of Computers 1(7), 1–8 (2006)CrossRefGoogle Scholar
  39. 39.
    Sehgal, M.S.B., Gondal, I., Dooley, L., Coppel, R.: AFEGRN: Adaptive fuzzy evolutionary gene regulatory network re-construction framework. In: IEEE International Conference on Fuzzy Systems, pp. 1737–1741 (2006)Google Scholar
  40. 40.
    Sokhansanj, B.A., Fitch, J.P.: URC fuzzy modeling and simulation of gene regulation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 2918–2921 (2001)Google Scholar
  41. 41.
    Sokhansanj, B.A., Fitch, J.P., Quong, J.N., Quong, A.A.: Linear fuzzy gene network models obtained from microarray data by exhaustive search. BMC Bioinformatics 5, 108 (2004)CrossRefGoogle Scholar
  42. 42.
    Takahashi, T., Tomita, S., Kobayashi, T., Honda, H.: Inference on common genetic network using fuzzy art associated matrix method. J. Biosci. Bioeng. 96, 154–160 (2003)Google Scholar
  43. 43.
    Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96(96), 2907–2912 (1999)CrossRefGoogle Scholar
  44. 44.
    Torres, A., Nieto, J.J.: Fuzzy logic in medicine and bioinformatics. Journal of Biomedicine and Biotechnology 2006, ARTICLE ID 91908 (2006)CrossRefGoogle Scholar
  45. 45.
    Vinterbo, S.A., Kim, E.Y., Ohno-Machado, L.: Small, fuzzy and interpretable gene expression based classifiers. Bioinformatics 21, 1964–1970 (2005)CrossRefGoogle Scholar
  46. 46.
    Woolf, P.J., Wang, Y.: A fuzzy logic approach to analyzing gene expression data. Physiol. Genomics 3, 9–15 (2000)Google Scholar
  47. 47.
    Xing, E.P., Karp, R.M.: CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics 17(S1), S306–S315 (2001)Google Scholar
  48. 48.
    Yeung, K.Y., Fraley, C., Murua, A., Raftery, E., Ruzzo, W.L.: Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10), 977–987 (2001)CrossRefGoogle Scholar
  49. 49.
    Yeung, K.Y., Haynor, D.R., Ruzzo, W.L.: Validating clustering for gene expression data. bioinformatics. bioinformatics 17(4), 309–318 (2001)CrossRefGoogle Scholar
  50. 50.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Zhang, S., Jin, G., Zhang, X.S., Chen, L.: Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7(16), 2856–2869 (2007)CrossRefGoogle Scholar
  52. 52.
    Zhang, S., Liu, H.W., Ning, X.M., Zhang, X.S.: A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks. International Journal of Data Mining and Bioinformatics (in press)Google Scholar
  53. 53.
    Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A 374(1), 483–490 (2007)CrossRefGoogle Scholar
  54. 54.
    Zhang, S., Wang, R.S., Zhang, X.S.: Uncovering fuzzy community structure in complex networks. Physical Review E 76, 046103 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shihua Zhang
    • 1
    • 2
  • Rui-Sheng Wang
    • 3
    • 5
  • Xiang-Sun Zhang
    • 1
  • Luonan Chen
    • 4
    • 5
  1. 1.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.School of InformationRenmin University of ChinaBeijingChina
  4. 4.Institute of Systems BiologyShanghai UniversityShanghaiChina
  5. 5.Department of Electrical Engineering and ElectronicsOsaka Sangyo UniversityOsakaJapan

Personalised recommendations