Active Energy-Aware Management of Business-Process Based Applications

Position Paper
  • Danilo Ardagna
  • Cinzia Cappiello
  • Marco Lovera
  • Barbara Pernici
  • Mara Tanelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5377)

Abstract

Energy management is becoming a priority in the design and operation of complex service-based information systems, as the energy costs of IT infrastructures increase. This paper aims at introducing a novel interdisciplinary approach for the development of advanced active energy-aware business process applications, based on expertise from several research areas: Web service technologies, data deduplication, optimization, performance evaluation, model identification, robust and predictive control. The basic idea is that enforcing energy efficiency goals for the development of green business process systems can only be achieved by recognizing their multi-layer feedback nature, which can be successfully exploited by combining IT methodologies with methods and tools from systems and control theory.

Keywords

Green IT Business Process Optimization Resource Allocation QoS management SLA System identification and Control Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes. IEEE Transactions on Software Engineering 33(6), 369–384 (2007)CrossRefGoogle Scholar
  2. 2.
    Ardagna, D., Trubian, M., Zhang, L.: Energy-Aware Autonomic Resource Allocation in Multi-tier Virtualized Environments. Politecnico di Milano, Dipartimento di Elettronica e Informazione Technical report number 2008. 13 (July 2008)Google Scholar
  3. 3.
    Ardagna, D., Trubian, M., Zhang, L.: SLA based resource allocation policies in autonomic environments. Journal of Parallel and Distributed Computing 67(3), 259–270 (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Barroso, L.A., Hoolzle, U.: The case for energy-proportional computing. IEEE Computer 40 (2007)Google Scholar
  5. 5.
    Canfora, G., Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning of Composite Web Services. In: ICWS 2005 Proc., Orlando (2005)Google Scholar
  6. 6.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)CrossRefGoogle Scholar
  7. 7.
    Karlsson, M., Karamanolis, C., Zhu, X.: Triage: Performance Diff. for Storage Systems Using Adaptive Control. ACM Transactions on Storage 1(4), 457–480 (2005)CrossRefGoogle Scholar
  8. 8.
    Kleinrock, L.: Queueing Systems. John Wiley and Sons, Chichester (1975)MATHGoogle Scholar
  9. 9.
    Kusic, D., Kandasamy, N.: Risk-Aware Limited Lookahead Control for Dynamic Resource Provisioning in Enterprise Computing Systems. In: ICSOC Proc. (2006)Google Scholar
  10. 10.
    Metha, V.: A Holistic Solution to the IT Energy Crisis (2007)Google Scholar
  11. 11.
    Pacifici, G., Spreitzer, M., Tantawi, A.N., Youssef, A.: Performance Management for Cluster-Based Web Services. IEEE Journal on Selected Areas in Communications 23(12) (December 2005)Google Scholar
  12. 12.
    Qin, W., Wang, Q.: Modeling and control design for performance management of web servers via an LPV approach. IEEE Transactions on Control Systems Technology 15(2), 259–275 (2007)CrossRefGoogle Scholar
  13. 13.
    Rolia, J., Cherkasova, L., McCarthy, C.: Configuring Workload Manager Control Parameters for Resource Pools. In: IEEE NOMS, Vancouver, Canada (April 2006)Google Scholar
  14. 14.
    Tanelli, M., Ardagna, D., Lovera, M.: LPV model identification for power management of web services. In: IEEE Multi-conference on Systems and Control (2008)Google Scholar
  15. 15.
    Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A scalable application placement controller for enterprise data centers. In: WWW 2007 (2007)Google Scholar
  16. 16.
    Urgaonkar, B., Pacifici, G., Shenoy, P.J., Spreitzer, M., Tantawi, A.N.: Analytic modeling of multitier Internet applications. ACM Transactions on the Web 1(1) (2007)Google Scholar
  17. 17.
    Williams, A., Arlitt, M., Williamson, C., Barker, K.: Web Workload Characterization: Ten Years Later. In: Web Content Delivery. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with end-to-end qos constraints. ACM Transactions on the Web 1(1), 1–26 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Transactions on Software Engineering 30(5) (May 2004)Google Scholar
  20. 20.
    Zheng, T., Woodside, C.M., Litoiu, M.: Performance model estimation and tracking using optimal filters. IEEE Transactions on Software Engineering 34(3), 391–406 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Danilo Ardagna
    • 1
  • Cinzia Cappiello
    • 1
  • Marco Lovera
    • 1
  • Barbara Pernici
    • 1
  • Mara Tanelli
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItaly

Personalised recommendations