Advertisement

Map Fusion Based on a Multi-Map SLAM Framework

  • François ChanierEmail author
  • Paul Checchin
  • Christophe Blanc
  • Laurent Trassoudaine
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 35)

Abstract

This paper presents a method for fusing two maps of an environment: one estimated with an application of the Simultaneous Localization and Mapping (SLAM) concept and the other one known a priori by a vehicle. The goal of such an application is double: first, to estimate the vehicle pose in this known map and, second, to constrain the map estimate with the known map using an implementation of the local maps fusion approach and a heterogeneous mapping of the environment. This article shows how a priori knowledge available in the form of a map can be fused within an EKF-SLAM framework to obtain more accuracy on the vehicle poses and map estimates. Simulation and experimental results are given to show these improvements.

Keywords

EKF SLAM Multi map fusion Robotcentric local map approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, R., Self, M., Cheeseman, P.: Estimating Uncertain Spatial Relationships in Robotics. In: Proceedings, 2nd workshop on Uncertainty in Artificial Intelligence (AAAI), Philadelphia, U.S. pp. 1–21 (1986).Google Scholar
  2. 2.
    Durrant-Whyte, H., Bailey, T.: Simultaneous Localisation and Mapping (SLAM) : Part I The Essential Algorithms. IEEE Robotics and Automation Magazine 13(2), 99–110 (2006).CrossRefGoogle Scholar
  3. 3.
    Bailey, T., Durrant-Whyte, H.: Simultaneous Localisation and Mapping (SLAM) : Part II State of the Art. IEEE Robotics and Automation Magazine 13(3), 108–117 (2006).CrossRefGoogle Scholar
  4. 4.
    Julier, S., Uhlmann, K.: A Counter Example to the Theory of Simultaneous Localization and Map Building. In: Proceedings, IEEE International Conference on Robotics and Automation, vol. 4. Seoul, Korea (2001).Google Scholar
  5. 5.
    Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM Algorithm. In: Proceedings, IEEE/RSJ International Conference on Robots and Systems, pp. 3562–3568. Beijing, China (2006).Google Scholar
  6. 6.
    Castellanos, J., Martinez-Cantin, R., Tardos, J., Neira, J.: Robocentric map joining: improving the consistency of EKF-SLAM. Robotics and Autonomous Systems 55(1), 21–29 (2007).CrossRefGoogle Scholar
  7. 7.
    Paz, L., Jensfelt, P., Tardos, J., Neira, J.: EKF SLAM Updates in O(n) with Divide and Conquer SLAM. In: Proceedings, IEEE Conference on Robotics and Automation, pp. 1657–1663. Roma, Italy (2007).Google Scholar
  8. 8.
    Rodriguez-Losada, D., Matia, F., Jimenez, A.: Local Maps Fusion for Real Time Multirobot Indoor Simultaneous Localization and Mapping. In: Proceedings, IEEE Conference on Robotics and Automation, New Orleans, U.S., vol. 2, pp. 1308–1313 (2004).Google Scholar
  9. 9.
    Neira, J., Tardos, J.: Data Association in Stochastic Mapping Using the Joint Compatibility Test. IEEE Transactions on Robotics and Automation 17(6), 890–897 (2001).CrossRefGoogle Scholar
  10. 10.
    Guivant, J., Nebot, E.: Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation. IEEE Transactions on Robotics and Automation 17(3), 242–257 (2001).CrossRefGoogle Scholar
  11. 11.
    Lee, K., Wijesoma, W., Guzman, J.: A Constrained SLAM Approach to Robust and Accurate Localisation of Autonomous Ground Vehicles. Robotics and Autonomous Systems 55(7), 527–540 (2007).CrossRefGoogle Scholar
  12. 12.
    Lee, K., Wijesoma, W., Guzman, J.: On the Observability and Observability Analysis of SLAM. In: Proceedings, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3569–3574. Beijing, China (2006).Google Scholar
  13. 13.
    Castellanos, J., Montiel, J., Neira, J., Tardos, J.: The SPmap: a probabilistic Framework for Simultaneous Localization and Map Building. IEEE Transactions on Robotics and Automation 15(5), 948–953 (1999).CrossRefGoogle Scholar
  14. 14.
    Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle Adjustment – A Modern Synthesis. In: W. Triggs, A. Zisserman, R. Szeliski (eds.) Vision Algorithms: Theory and Practice, LNCS, pp. 298–375. Springer Verlag, London (U.K.) (2000).Google Scholar
  15. 15.
    Bailey, T., Nebot, E., Rosenblatt, J., Durrant-Whyte, H.: Data Association for Mobile Robot Navigation: A Graph Theoretic Approach. In: Proceedings, IEEE International Conference on Robotics and Automation, vol. 3, pp. 2512–2517. Washington, US (2000).Google Scholar
  16. 16.
    Bar-Shalom, Y., Li, X., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. J. Wiley and Sons, Inc., New York (U.S.).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François Chanier
    • 1
    Email author
  • Paul Checchin
    • 1
  • Christophe Blanc
    • 1
  • Laurent Trassoudaine
    • 1
  1. 1.LAboratoire des Sciences et Matériaux pour l’Electronique et d’Automatique, Université de Clermont-FerrandFrance

Personalised recommendations