Advertisement

SODA: An Optimizing Scheduler for Large-Scale Stream-Based Distributed Computer Systems

  • Joel Wolf
  • Nikhil Bansal
  • Kirsten Hildrum
  • Sujay Parekh
  • Deepak Rajan
  • Rohit Wagle
  • Kun-Lung Wu
  • Lisa Fleischer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5346)

Abstract

This paper describes the SODA scheduler for System S, a highly scalable distributed stream processing system. Unlike traditional batch applications, streaming applications are open-ended. The system cannot typically delay the processing of the data. The scheduler must be able to shift resource allocation dynamically in response to changes to resource availability, job arrivals and departures, incoming data rates and so on. The design assumptions of System S, in particular, pose additional scheduling challenges. SODA must deal with a highly complex optimization problem, which must be solved in real-time while maintaining scalability. SODA relies on a careful problem decomposition, and intelligent use of both heuristic and exact algorithms. We describe the design and functionality of SODA, outline the mathematical components, and describe experiments to show the performance of the scheduler.

Keywords

stream processing scheduling admission control flow balancing 

References

  1. 1.
    Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Selo, P., Park, Y., Venkatramani, C.: SPC: A distributed, scalable platform for data mining. In: International Workshop on Data Mining Standards, Services and Platforms (2006)Google Scholar
  2. 2.
    Douglis, F., Palmer, J., Richards, E., Tao, D., Tetzlaff, W., Tracey, J., Yin, J.: Position: Short object lifetimes require a delete-optimized storage system. In: ACM SIGOPS European Workshop (2004)Google Scholar
  3. 3.
    Hildrum, K., Douglis, F., Wolf, J., Yu, P.S., Fleischer, L., Katta, A.: Storage optimization for large-scale stream processing systems. In: ACM Transactions on Storage (2008)Google Scholar
  4. 4.
    Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani, C.: Design, implementation and evaluation of the linear road benchmark on the stream processing core. In: ACM SIGMOD International Conference on Management of Data (2006)Google Scholar
  5. 5.
    Jacques-Silva, G., Challenger, J., Degenaro, L., Giles, J., Wagle, R.: Towards autonomic fault recovery in System-S. In: International Conference on Autonomic Computing (2007)Google Scholar
  6. 6.
    Wu, K.-L., Yu, P.S., Gedik, B., Hildrum, K.W., Aggarwal, C.C., Bouillet, E., Fan, W., George, D.A., Gu, X., Luo, G., Wang, H.: Challenges and experience in prototyping a multi-modal stream analytic and monitoring application on System S. In: International Conference on Very Large Data Bases (2007)Google Scholar
  7. 7.
    Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The design of the Borealis stream processing engine. In: Conference on Innovative Data Systems Research (2005)Google Scholar
  8. 8.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S.R., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous dataflow processing for an uncertain world. In: Conference on Innovative Data Systems Research (2003)Google Scholar
  9. 9.
    Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford stream data manager. IEEE Data Engineering Bulletin 26 (2003)Google Scholar
  10. 10.
    Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., Balakrishnan, H.: The Aurora and Medusa projects. IEEE Data Engineering Bulletin 26(1) (2003)Google Scholar
  11. 11.
    Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L., Fleischer, L.: Scheduling optimizer for distributed applications: A reference paper. Technical Report 24453, IBM Research Report (2007)Google Scholar
  12. 12.
    Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: Efficient load shedding techniques for distributed stream processing. In: International Conference on Very Large Data Bases, pp. 159–170 (2007)Google Scholar
  13. 13.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw-Hill, New York (1985)zbMATHGoogle Scholar
  14. 14.
    Blazewicz, J., Ecker, K., Schmidt, G., Weglarz, J.: Scheduling in Computer and Manufacturing Systems. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ibaraki, T., Katoh, N.: Resource Allocation Problems. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  16. 16.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley and Sons, New York (1988)CrossRefzbMATHGoogle Scholar
  17. 17.
  18. 18.
    Xing, Y., Hwang, J.H., Çetintemel, U., Zdonik, S.: Providing resiliency to load variations in distributed stream processing. In: International Conference on Very Large Data Bases, VLDB Endowment, pp. 775–786 (2006)Google Scholar
  19. 19.
    Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distribution in the Borealis stream processor. In: IEEE International Conference on Data Engineering, Washington, DC, USA, pp. 791–802. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  20. 20.
    Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.: Network-aware operator placement for stream-processing systems. In: IEEE International Conference on Data Engineering, Washington, DC, USA. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  21. 21.
    Lakshmanan, G.T., Strom, R.E.: Biologically-Inspired Distributed Middleware Management for Stream Processing Systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol. 5346, pp. 223–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Motwani, R., Widom, J., Arasu, A., Babcokc, B., Babu, S., Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and resource management in a data stream management system. In: Conference on Innovative Data Systems Research (2003)Google Scholar
  23. 23.
    Xia, C.H., Towsley, D., Zhang, C.: Distributed resource management and admission control of stream processing systems with max utility. In: ICDCS 2007: Proceedings of the 27th International Conference on Distributed Computing Systems (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Joel Wolf
    • 1
  • Nikhil Bansal
    • 1
  • Kirsten Hildrum
    • 1
  • Sujay Parekh
    • 1
  • Deepak Rajan
    • 1
  • Rohit Wagle
    • 1
  • Kun-Lung Wu
    • 1
  • Lisa Fleischer
    • 2
  1. 1.IBM T.J. Watson Research CenterHawthorneUSA
  2. 2.Dartmouth CollegeHanoverUSA

Personalised recommendations