A Design and Chronological Survey of Decision Feedback Equalizer for Single Carrier Transmission Compared with OFDM

  • Tariq Jamil Saifullah Khanzada
  • Ali Ramadan Ali
  • Abdul Qadeer Khan Rajput
  • Abbas S. Omar
Part of the Communications in Computer and Information Science book series (CCIS, volume 20)


Single Carrier Transmission (SCT) is a competing technique for Orthogonal Frequency Division Multiplexing (OFDM) in Broadband Wireless Systems (BWS). Recent developments in Frequency Domain Equalization (FDE) using Decision Feedback Equalization (DFE) have greatly improved the system based on the SC technique, this caused SC-DFE to be selected as a candidate technique for the forthcoming BWS. This paper concentrates the growth of DFE design from scratch till its present form used in SCT and thus restricts our survey to the development of DFE for SCT. A new SCT-DFE modified model is also presented and compared with OFDM, both simulated for WLAN system. This presented equalizer structure performs better than OFDM and improves its performance when the number of iterations is increased. SC-LE and SC-DFE both supersede the performance of OFDM.


Orthogonal Frequency Division Multiplex Wireless Local Area Network Orthogonal Frequency Division Multiplex System Orthogonal Frequency Division Multiplex Symbol Space Time Block Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ETSI. Radio Broadcasting Systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers, 2 edn. (May 1997)Google Scholar
  2. 2.
    ETSI. Digital Video Broadcasting: Framing structure, channel coding, and modulation of digital terrestrial televisionGoogle Scholar
  3. 3.
    ETSI. Digital Radio Mondiale (DRM)-System SpecificationGoogle Scholar
  4. 4.
    Smith, C., Meyer, J.: 3G wireless with 802.16 and 802.11. Technical reportGoogle Scholar
  5. 5.
    Bingham, J.: ADSL, VDSL and Multi Carrier Modulation. Wiley, New York (2000)CrossRefGoogle Scholar
  6. 6.
    van Nee, R., Prasad, R.: OFDM for Wireless Multimedia Communications. Artech House (2000)Google Scholar
  7. 7.
    Hanzo, L., Mnster, M., Choi, B.J., Keller, T.: OFDM and MCCDMA for Broadband Multi-User Communications, WLANs and Broadcasting. Artech House (September 2003)Google Scholar
  8. 8.
    Weinstein, S.B., Ebert, P.M.: Data transmission by frequency division multiplexing using the discrete fourier transform. In: IEEE Trans. Comm. Tech., vol. 19, pp. 628–634 (October 1971)Google Scholar
  9. 9.
    Prasad, R.: OFDM for Wireless Communications Systems. Artech House (2004)Google Scholar
  10. 10.
    Proakis, J.G.: Digital Communications. McGraw Hill, New York (1995)Google Scholar
  11. 11.
    Ali, A.R., Aassie-Ali, A., Omar, A.S.: A multistage channel estimation and ICI reduction method for OFDM systems in double dispersive channels. In: IEEE Radio and Wireless Symposium (RWS-2006), San Diego,USA (2006)Google Scholar
  12. 12.
    Aassie-Ali, A., Aly, O., Omar, A.S.: High resolution WLAN indoor channel parameter estimation and measurements for communication and positioning applications at 2.4, 5.2 and 5.8 ghz. In: IEEE Radio and Wireless Symposium (RWS-2006), San Diego,USA (2006)Google Scholar
  13. 13.
    Muck, M., de Courville, M., Duhamel, P.: A pseudorandom postfix OFDM modulator-semi-blind channel estimation and equalization. IEEE Transactions On Signal Processing 54(3) (March 2006)Google Scholar
  14. 14.
    Chang, M.X., Su, Y.T.: Blind and semiblind detections of OFDM signals in fading channels. IEEE Trans. Communications 52(5), 744–754 (2004)CrossRefGoogle Scholar
  15. 15.
    Aassie-Ali, A., Omar, A.S.: Super resolution matrix pencil algorithm for future fading prediction of mobile radio channels. In: Proc. 8th IEEE International Symposium on Signal Processing and its Application, ISSAP 2005, Sydney,Austerlia (2005)Google Scholar
  16. 16.
    Cimini. Jr., L.J.: Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. 33(7), 665–675 (1985)CrossRefGoogle Scholar
  17. 17.
    McDonnell, J.T.E., Wilkinson, T.A.: Comparison of computational complexity of adaptive equalization and OFDM for indoor wireless networks. In: Proc. PIMRC 1996, Taipei, pp. 1088–1090 (24th/25th September 2003)Google Scholar
  18. 18.
    Falconer, D., Ariyavisitakul, S.L., Benyamin-Seeyar, A., Eidson, B.: Frequency domain equalization for single carrier broadband wireless systems. IEEE Commun. Mag. 40(4), 58–66 (2002)CrossRefGoogle Scholar
  19. 19.
    Sari, H., Karam, G., Jeanclaude, I.: Channel equalization and carrier synchronization in OFDM systems. In: Audio and Video Digital Radio Broadcasting Systems and Techniques, Amsterdam,Netherlands, pp. 191–202. Elsevier Science Publishers (September 1993)Google Scholar
  20. 20.
    Sari, H., Karam, G., Jeanclaude, I.: Frequency domain equalization of mobile radio and terrestrial broadcast channels. In: Proc. IEEE Global Telecommun. Conf., vol. 1, pp. 1–5 (November 1994)Google Scholar
  21. 21.
    Aue, V., Fettweis, G.P., Valenzuela, R.: A comparison of the performance of linearly equalized single carrier and coded OFDM over frequency selective fading channels using the random coding technique. In: Proc. ICC 1998 IEEE International Conference on Communications, vol. 2, pp. 753–757 (June 1998)Google Scholar
  22. 22.
    Qureshi, S.U.H.: Adaptive equalization. In: Proc. IEEE, vol. 73, pp. 1349–1387 (September 1985)Google Scholar
  23. 23.
    Sari, H., Karam, G., Jeanclaude, I.: Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag. 33, 100–109 (1995)CrossRefGoogle Scholar
  24. 24.
    Walzman, T., Schwartz, M.: Automatic equalization using the discrete frequency domain. IEEE Trans. Commun. IT-19(1), 59–68 (1973)Google Scholar
  25. 25.
    Ferrara Jr., E.R.: Frequency-Domain Adaptive Filtering. Prentice-Hall, Englewood Cliffs (1985)Google Scholar
  26. 26.
    Sari, H., Karam, G., Jeanclaude, I.: An analysis of orthogonal frequency division multiplexing for mobile radio applications, pp. 1–5 (June 1994)Google Scholar
  27. 27.
    Ariyavisitakul, S., Greenstein, L.J.: Reduced-complexity equalization techniques for broadband wirelesschannels. In: 5th IEEE International Conference on Universal Personal Communications, 1996, vol. 1, pp. 125–130 (September 1996)Google Scholar
  28. 28.
    Karsten Brüninghaus, ninghaus, and Hermann Rohling. On the duality of multi-carrier spread spectrum and single-carrier transmission, pp. 187–194 (1997)Google Scholar
  29. 29.
    Czylwik, A.: Comparison between adaptive OFDM] and single carrier modulation with frequency domain equalization. In: Proc. IEEE Veh.Technol. Conf., May, vol. 2, pp. 865–869 (1997)Google Scholar
  30. 30.
    Gusmo, A., Dinis, R., Conceio, j., Esteves, N.: Comparison of two modulation choices for broadband wireless communications. In: Proc. IEEE Vehicular Technology Conf., vol. 2, pp. 1300–1305 (2000)Google Scholar
  31. 31.
    Wang, Z., Giannakis, G.B.: Wireless multicarrier communications: Where fourier meets shannon. IEEE Signal Process. Mag. 17(3), 29–48 (2000)CrossRefGoogle Scholar
  32. 32.
    Al-Dhahir, N.: Single-carrier frequency-domain equalization for space– time block-coded transmission over frequency-selective fading channels. IEEE Commun. Lett. 5(7), 304–306 (2001)CrossRefGoogle Scholar
  33. 33.
    Tubbax, J., Come, B., Van der Perre, L., Deneire, L., Donnay, S., Engels, M.: OFDM versus single carrier with cyclic prefix: a system-based comparison. In: Vehicular Technology ConferenceGoogle Scholar
  34. 34.
    Falconer, D., Ariyavisitakul, S.L.: Broadband wireless using single carrier and frequency domain equalization. In: 5th International Symposium on Wireless Personal Multimedia Communications, 27-30 October 2002, vol. 1, pp. 27–36 (2002)Google Scholar
  35. 35.
    Falconer, D., Ariyavisitakul, S.L.: Frequency domain equalization for 211 GHz fixed broadband wireless systems. Tutorial, IEEE 802.16, January 22 (2001)Google Scholar
  36. 36.
    Benvenuto, N., Tomasin, S.: On the comparison between OFDM and single carrier modulation with a dfe using a frequency-domain feedforward filter. IEEE Trans. Commun. 50(6), 947–955 (2002)CrossRefGoogle Scholar
  37. 37.
    Benvenuto, N., Tomasin, S.: Block iterative dfe for single carrier modulation. Electron. Lett. 38(19) (12 September)Google Scholar
  38. 38.
    Shengli, Z., Giannakis, G.B.: Single-carrier space-time block-coded transmissions over frequency-selective fading channels. IEEE Transactions on Information Theory, one 49(1), 164–179 (2003)CrossRefGoogle Scholar
  39. 39.
    Gusmao, A., Dinis, R., Esteves, N.: On frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Trans. Commun. 51(7), 1029–1033 (2003)CrossRefGoogle Scholar
  40. 40.
    Gusmo, A., Dinis, R., Esteves, N.: On broadband block transmission over strongly frequency-selective fading channels. In: Wireless confernece 2003, Calgary, Canada, pp. 261–269 (July 2003)Google Scholar
  41. 41.
    Schniter, P., Hong, L.: Iterative equalization for single-carrier cyclic-prefix in doubly-dispersive channels. In: 37th Asilomar Conference on Signals, Systems and Computers, 9–12 November, vol. 1, pp. 502–506 (2003)Google Scholar
  42. 42.
    Wang, Z., Ma, X., Giannakis, G.B.: OFDM or single-carrier block transmissions? IEEE Trans. Commun. 52(3), 380–394 (2004)CrossRefGoogle Scholar
  43. 43.
    Tran, T.A., Lai, T.X., Sesay, A.B.: Single-carrier concatenated space-time block coded transmissions over selective-fading channels. Canadian Conference on Electrical and Computer Engineering 3, 1577–1580 (2004)Google Scholar
  44. 44.
    Zhang, Q., Le-Ngoc, T.: Channel-estimate-based frequency-domain equalization (ce-fde) for broadband single-carrier transmission. Wireless Commun. and Mobile Computing 4(4), 449–461 (2004)CrossRefGoogle Scholar
  45. 45.
    Dinis, R., Kalbasi, R., Falconer, D., Banihashemi, A.H.: Iterative layered space-time receivers for single-carrier transmission over severe time-dispersive channels. IEEE Communications Letters 8(9), 579–581 (2004)CrossRefGoogle Scholar
  46. 46.
    Agathe, F.S., Sari, H.: Single-carrier transmission with iterative frequency-domain decision-feedback equalization. In: 13th european Signal processing conference, Antalya,Turkey (September 2005)Google Scholar
  47. 47.
    Gusmao, A., Torres, P., Dinis, R., Esteves, N.: On SC/FDE block transmission with reduced cyclic prefix assistance. In: ICC 2006. IEEE International Conference on Communications, Istanbul, vol. 11, pp. 5058–5063 (June 2006)Google Scholar
  48. 48.
    Martin, R.K., Vanbleu, K., Ysebaert, G., Klein, A.G.: Bit error rate minimizing channel shortening equalizers for multicarrier systems. In: IEEE 7th Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2006, Cannes, France, pp. 1–5 (July 2006)10.1109/SPAWC.2006.346351Google Scholar
  49. 49.
    Agathe, F.S., Sari, H.: New results in iterative frequency-domain decision-feedback equalization. In: Proc. 14th European Conference on Signal Processing (EUSIPCO 2006), Florence, Italy (September 2006)Google Scholar
  50. 50.
    Khanzada, T.J.S., Ali, A.R., Omar, A.S.: An analytical model for sltdm to reduce the papr and ici in OFDM systems for fast varying channels. In: Proc. 10th IEEE INMIC 2006, Islamabad, Pakistan, pp. 57–61 (December 2006)Google Scholar
  51. 51.
    Tomeba, F.A.H., Takeda, K.: Ber performance of single-carrier transmission in a channel having fractionally spaced time delays. Technical report, IEICE, Tohoku UnivGoogle Scholar
  52. 52.
    Takeda, F.A.K., Tomeba, H.: Single carrier transmission with frequency-domain equalization using tomlinson-harashima precoding. Technical report, Tohoku Univ. Sendai JapanGoogle Scholar
  53. 53.
    Takeda, F.A.K., Tomeba, H.: Ber performance of turbo coded single-carrier transmission with joint tomlinson-harashima precoding and frequency-domain equalization. Technical report, Tohoku Univ. Sendai Japan (2007)Google Scholar
  54. 54.
    Tang, Z., Leus, G.: Receiver design for single-carrier transmission over time-varying channels. In: International Conference on Acoustics, Speech and Signal Processing, 2007. ICASSP 2007, Honolulu, HI, USA, April 2007, vol. 3, p. III–129–III–132. IEEE, Los Alamitos (2007)Google Scholar
  55. 55.
    Ysebaert, G., Martin, R., Vanbleu, K.: Bit error rate minimizing channel shortening equalizers for single carrier cyclic prefixed systems. In: International Confrence on Acoustics, Speech and Signal Processing ICASSP 2007, Hawaii,USA (April 2007)Google Scholar
  56. 56.
    Martin, R.K., Ysebaert, G., Vanbleu, K.: Bit error rate minimizing channel shortening equalizers for cyclic prefixed systems. In: IEEE Transactions on Signal Processing, Hawaii,USA, vol. 55, pp. 2605–2616 (June 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tariq Jamil Saifullah Khanzada
    • 1
  • Ali Ramadan Ali
    • 1
  • Abdul Qadeer Khan Rajput
    • 2
  • Abbas S. Omar
    • 1
  1. 1.Chair of Microwave and Communication EngineeringUniversity of MagdeburgGermany
  2. 2.Department of Computer Systems & Software EngineeringMehran University of Engineering & TechnologyJamshoroPakistan

Personalised recommendations