The Small World of Web Network Graphs

  • Malik Muhammad Saad Missen
  • Mohand Boughanem
  • Bruno Gaume
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 20)


The World Wide Web has taken the form of a social network and if analyzed carefully, we can extract various communities from this network based on different parameters such as culture, trust, behavior, relationships, etc. The Small World Effect is a kind of behavior that has been discovered in entity networks of many natural phenomena. The set of nodes in a network showing Small World Effect form a local network within the major network highlighting the properties of a Small World Network. This work analyzes three different web networks, i.e. Term-Term similarity network, Document-Document similarity network, and Hyperlinks network, to check whether they show Small World Network behavior or not. We define a criterion and then compare these network graphs against that criterion. The network graph which fulfills that criterion is declared to be a Small World Network.


Information Retrieval Small World Network Social Network Hyperlink Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grossman, D.A., Frieder, O.: Information Retrieval: Algorithms and Heuristics, 2nd edn. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting Spam Web Pages through Content Analysis. In: Proceedings of Conference WWW 2006, Edinburgh, Scotland (2006)Google Scholar
  3. 3.
    Kleinberg, J.M.: Authoritative Sources in Hyperlinked Environment. In: Proc. Of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 668–667 (1998)Google Scholar
  4. 4.
    Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Proc. of WWW 1998, Brisbane, Australia, pp. 107–117 (1998)Google Scholar
  5. 5.
  6. 6.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of Small-World Networks. Nature 393, 440–442 (1998)CrossRefPubMedGoogle Scholar
  7. 7.
    Adamic, L.A.: The Small World Web. In: Abiteboul, S., Vercoustre, A.-M. (eds.) ECDL 1999. LNCS, vol. 1696. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Milgram, S.: The Small World Problem. Psychology Today 2, 60–67 (1967)Google Scholar
  9. 9.
    Wman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45 (2003)Google Scholar
  10. 10.
    Erdős, P., Renyi, A.: On Random Graphs. I. Publ. Math. Debrecen 6, 290–291 (1959)Google Scholar
  11. 11.
    Gaume, B.: Balades Aléatoires dans les Petits Mondes Lexicaux. In: I3 Information Interaction Intelligence, CEPADUES edn., pp. 39–96 (2004)Google Scholar
  12. 12.
    TREC Data Collection,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Malik Muhammad Saad Missen
    • 1
  • Mohand Boughanem
    • 1
  • Bruno Gaume
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse (IRIT)TOULOUSE CEDEX 9France

Personalised recommendations