Rule-Based Approaches for Representing Probabilistic Ontology Mappings

  • Andrea Calì
  • Thomas Lukasiewicz
  • Livia Predoiu
  • Heiner Stuckenschmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5327)

Abstract

Using mappings between ontologies is a common way of approaching the semantic heterogeneity problem on the Semantic Web. To fit into the landscape of Semantic Web languages, a suitable logic-based representation formalism for mappings is needed, which allows to reason with ontologies and mappings in an integrated manner, and to deal with uncertainty and inconsistencies in automatically created mappings. We analyze the requirements for such a formalism, and propose to use frameworks that integrate description logic ontologies with probabilistic rules. We compare two such frameworks and show the advantages of using the probabilistic extensions of their deterministic counterparts. The two frameworks that we compare are tightly coupled probabilistic dl-programs, which tightly combine the description logics behind OWL DL resp. OWL Lite, disjunctive logic programs under the answer set semantics, and Bayesian probabilities, on the one hand, and generalized Bayesian dl-programs, which tightly combine the DLP-fragment of OWL Lite with Datalog (without negation and equality) based on the semantics of Bayesian networks, on the other hand.

Keywords

Representing probabilistic ontology mappings rule languages Semantic Web uncertainty inconsistency probabilistic description logic programs description logics disjunctive logic programs answer set semantics Bayesian probabilities Bayesian description logic programs Datalog Bayesian networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Serafini, L., Stuckenschmidt, H., Wache, H.: A formal investigation of mapping language for terminological knowledge. In: Proceedings IJCAI 2005, pp. 576–581. Professional Book Center (2005)Google Scholar
  2. 2.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  3. 3.
    Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Svab, O., Svatek, V., van Hage, W.R., Yatskevich, M.: First results of the ontology alignment evaluation initiative 2006. In: Proceedings ISWC 2006 Workshop on Ontology Matching (2006)Google Scholar
  4. 4.
    Euzenat, J., Stuckenschmidt, H., Yatskevich, M.: Introduction to the ontology alignment evaluation 2005. In: Proceedings K-CAP 2005 Workshop on Integrating Ontologies (2005)Google Scholar
  5. 5.
    Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis, University of Karlsruhe, Karlsruhe, Germany (2006)Google Scholar
  6. 6.
    RIF Working Group, http://www.w3.org/2005/rules/
  7. 7.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. Artif. Intell. 172(12/13), 1495–1539 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lukasiewicz, T.: A novel combination of answer set programming with description logics for the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 384–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logics. In: Proceedings WWW 2003, pp. 48–57. ACM Press, New York (2003)Google Scholar
  10. 10.
    Giugno, R., Lukasiewicz, T.: P-\(\mathcal{SHOQ}({\bf D})\): A probabilistic extension of \(\mathcal{SHOQ}({\bf D})\) for probabilistic ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS, vol. 2424, pp. 86–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    da Costa, P.C.G.: Bayesian Semantics for the Semantic Web. PhD thesis, George Mason University, Fairfax, VA, USA (2005)Google Scholar
  12. 12.
    da Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In: Proceedings FOIS 2006, pp. 237–249. IOS Press, Amsterdam (2006)Google Scholar
  13. 13.
    Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2), 288–307 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jensen, F.V.: Introduction to Bayesian Networks. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 17–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 200–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comput. 9(3/4), 365–386 (1991)CrossRefMATHGoogle Scholar
  19. 19.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: Proceedings AAAI 2007, pp. 1408–1413. AAAI Press, Menlo Park (2007)Google Scholar
  20. 20.
    Wang, P., Xu, B.: Debugging ontology mapping: A static method. Computing and Informatics 27(1), 21–36 (2008)Google Scholar
  21. 21.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1/2), 7–56 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Predoiu, L., Stuckenschmidt, H.: A probabilistic framework for information integration and retrieval on the Semantic Web. In: Proceedings InterDB 2007 Workshop on Database Interoperability (2007)Google Scholar
  23. 23.
    Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic description logic programs for representing ontology mappings. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 178–198. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrea Calì
    • 1
    • 2
  • Thomas Lukasiewicz
    • 2
  • Livia Predoiu
    • 3
  • Heiner Stuckenschmidt
    • 3
  1. 1.Oxford-Man Institute of Quantitative FinanceUniversity of OxfordOxfordUK
  2. 2.Computing LaboratoryUniversity of OxfordOxfordUK
  3. 3.Institut für InformatikUniversität MannheimMannheimGermany

Personalised recommendations