An Approach to Probabilistic Data Integration for the Semantic Web

  • Andrea Calì
  • Thomas Lukasiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5327)

Abstract

Probabilistic description logic programs are a powerful tool for knowledge representation in the Semantic Web, which combine description logics, normal programs under the answer set or well-founded semantics, and probabilistic uncertainty. The task of data integration amounts to providing the user with access to a set of heterogeneous data sources in the same fashion as when querying a single database, that is, through a global schema, which is a common representation of all the underlying data sources. In this paper, we make use of probabilistic description logic programs to model expressive data integration systems for the Semantic Web, where constraints are expressed both over the data sources and the global schema. We describe different types of probabilistic data integration, which aim especially at applications in the Semantic Web.

Keywords

Probabilistic data integration Semantic Web probabilistic description logic programs description logics normal programs answer set semantics well-founded semantics probabilistic uncertainty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T.: Weaving the Web, Harper, San Francisco, CA (1999)Google Scholar
  2. 2.
    W3C: OWL Web Ontology Language Overview, W3C Recommendation (February 10, 2004), http://www.w3.org/TR/2004/REC-owl-features-20040210/
  3. 3.
    van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data integration. In: Proceedings ICDE 2005, pp. 459–470. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  4. 4.
    Pan, R., Ding, Z., Yu, Y., Peng, Y.: A Bayesian network approach to ontology mapping. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 563–577. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 17–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. Artif. Intell. 172(12/13), 1495–1539 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for description logic programs in the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Lukasiewicz, T.: A novel combination of answer set programming with description logics for the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 384–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Giugno, R., Lukasiewicz, T.: P-\(\mathcal{SHOQ}({\bf D})\): A probabilistic extension of \(\mathcal{SHOQ}({\bf D})\) for probabilistic ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS, vol. 2424, pp. 86–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–883 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    da Costa, P.C.G.: Bayesian Semantics for the Semantic Web. PhD thesis, George Mason University, Fairfax, VA, USA (2005)Google Scholar
  12. 12.
    da Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In: Proceedings FOIS 2006, pp. 237–249. IOS Press, Amsterdam (2006)Google Scholar
  13. 13.
    Udrea, O., Deng, Y., Hung, E., Subrahmanian, V.S.: Probabilistic ontologies and relational databases. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 1–17. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2), 288–307 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Calì, A., Lukasiewicz, T.: Tightly integrated probabilistic description logic programs for the Semantic Web. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 428–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 21–33. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Kersting, K., De Raedt, L.: Bayesian logic programs. CoRR cs.AI/0111058 (2001)Google Scholar
  18. 18.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1–2), 7–56 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lukasiewicz, T.: Tractable probabilistic description logic programs. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS, vol. 4772, pp. 143–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proceedings KR 2006, pp. 260–270. AAAI Press, Menlo Park (2006)Google Scholar
  21. 21.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases. New Generation Computing 17, 365–387 (1991)CrossRefMATHGoogle Scholar
  22. 22.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proceedings PODS 2002, pp. 233–246. ACM Press, New York (2002)Google Scholar
  23. 23.
    Friedman, M., Levy, A.Y., Millstein, T.D.: Navigational plans for data integration. In: Proceedings AAAI 1999, pp. 67–73. AAAI Press/ MIT Press (1999)Google Scholar
  24. 24.
    Calì, A.: Reasoning in data integration systems: Why LAV and GAV are siblings. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS, vol. 2871, pp. 562–571. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Dalvi, N.N., Suciu, D.: Management of probabilistic data: Foundations and challenges. In: Proceedings PODS 2007, pp. 1–12. ACM Press, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrea Calì
    • 1
    • 2
  • Thomas Lukasiewicz
    • 2
  1. 1.Oxford-Man Institute of Quantitative FinanceUniversity of OxfordOxfordUK
  2. 2.Computing LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations