Semantic Science: Ontologies, Data and Probabilistic Theories

  • David Poole
  • Clinton Smyth
  • Rita Sharma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5327)


This chapter overviews work on semantic science. The idea is that, using rich ontologies, both observational data and theories that make (probabilistic) predictions on data are published for the purposes of improving or comparing the theories, and for making predictions in new cases. This paper concentrates on issues and progress in having machine accessible scientific theories that can be used in this way. This paper presents the grand vision, issues that have arisen in building such systems for the geological domain (minerals exploration and geohazards), and sketches the formal foundations that underlie this vision. The aim is to get to the stage where: any new scientific theory can be tested on all available data; any new data can be used to evaluate all existing theories that make predictions on that data; and when someone has a new case they can use the best theories that make predictions on that case.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A Pattern Language. Oxford University Press, New York (1977)Google Scholar
  2. Aristotle (350 B.C.). Categories. Translated by E. M. Edghill,
  3. Berg, J.: Aristotle’s theory of definition. In: ATTI del Convegno Internazionale di Storia della Logica, San Gimignano, pp. 19–30 (1982),
  4. Berners-Lee, T., Fischetti, M.: Weaving the Web: The original design and ultimate destiny of the World Wide Web, by its inventor, Harper Collins, San Francisco, CA (1999)Google Scholar
  5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web: A new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American, 28–37 (2001)Google Scholar
  6. da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: A Bayesian ontology language for the semantic web. In: Proceedings of the ISWC Workshop on Uncertainty Reasoning for the Semantic Web, Galway, Ireland (2005),
  7. Darwiche, A., Goldszmidt, M.: On the relation between kappa calculus and probabilistic reasoning. In: UAI 1994, pp. 145–153 (1994)Google Scholar
  8. De Roure, D., Jennings, N.R., Shadbolt, N.R.: The semantic grid: Past, present and future. Procedings of the IEEE 93(3), 669–681 (2005), CrossRefGoogle Scholar
  9. Fodor, J.A.: The Language of Thought. Harvard University Press, Cambridge (1975)Google Scholar
  10. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)MATHGoogle Scholar
  11. Gillespie, M.R., Styles, M.T.: BGS rock classification scheme, 2nd edn., RR 99-06, British Geological Survey. Classification of igneous rocks. Research Report, vol. 1 (1999),
  12. Henrion, M., Breese, J., Horvitz, E.: Decision analysis and expert systems. AI Magazine 12(4), 61–94 (1991)Google Scholar
  13. Kersting, K., De Raedt, L.: Bayesian logic programming: Theory and tool. In: Getoor, L., Taskar, B. (eds.) An Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)Google Scholar
  14. Laskey, K.B., Wright, E.J., da Costa, P.C.G.: Envisioning uncertainty in geospatial information. In: UAI Applications Workshop 2007 The 5th Bayesian Modeling Applications Workshop (2007),
  15. Laskey, K.B.: MEBN: A language for first-order Bayesian knowledge bases. Artificial Intelligence 172(2-3) (2008),, doi:10.1016/j.artint.2007.09.006
  16. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence 172(6-7), 852–883 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. Lukasiewicz, T., Schellhase, J.: Variable-strength conditional preferences for ranking objects in ontologies. Journal Web Semantics 5(3), 180–194 (2007)CrossRefGoogle Scholar
  18. McGuinness, D., Fox, P., Cinquini, L., West, P., Garcia, J., Benedict, J.L., Middleton, D.: The virtual solar-terrestrial observatory: A deployed semantic web application case study for scientific research. In: Proceedings of the Nineteenth Conference on Innovative Applications of Artificial Intelligence (IAAI 2007), Vancouver, BC, Canada (2007),
  19. McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview. W3C Recommendation, W3C (2004) (February 10, 2004),
  20. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report SIDL-WP-1999-0120, Stanford InfoLab (1999),
  21. Pearl, J.: Probabilistic semantics for nonmonotonic reasoning: A survey. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) KR 1989, Toronto, pp. 505–516 (1989)Google Scholar
  22. Pinker, S.: The Language Instinct, Harper Collins, New York (1994)Google Scholar
  23. Polya, G.: Mathematics and Plausible Reasoning. Patterns of Plausible Inference, vol. II. Princeton University Press, Princeton (1954)MATHGoogle Scholar
  24. Pool, M., Fung, F., Cannon, S., Aikin, J.: Is it worth a hoot? Qualms about OWL for uncertainty reasoning. In: Proceedings of the ISWC Workshop on Uncertainty Reasoning for the Semantic Web (2005),
  25. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)CrossRefMATHGoogle Scholar
  26. Poole, D.: Logical generative models for probabilistic reasoning about existence, roles and identity. In: 22nd AAAI Conference on AI, AAAI 2007 (2007),
  27. Poole, D., Smyth, C.: Type uncertainty in ontologically-grounded qualitative probabilistic matching. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 763–774. Springer, Heidelberg (2005), CrossRefGoogle Scholar
  28. Poole, D., Smyth, C., Sharma, R.: Semantic science and machine-accessible scientific theories. In: AAAI Spring Symposium on Semantic Science Knowledge Integration, Stanford, CA (2008)Google Scholar
  29. Popper, K.: The Logic of Scientific Discovery. Basic Books, New York (1959)MATHGoogle Scholar
  30. Sapir, E.: The status of linguistics as a science. Language 5(209) (1929)Google Scholar
  31. Smith, B.: The logic of biological classification and the foundations of biomedical ontology. In: Westerståhl, D. (ed.) 10th International Conference in Logic Methodology and Philosophy of Science. Elsevier-North-Holland, Oviedo (2003a), Google Scholar
  32. Smith, B.: Ontology. In: Floridi, L. (ed.) Blackwell Guide to the Philosophy of Computing and Information, pp. 155–166. Blackwell, Oxford (2003b), Google Scholar
  33. Smyth, C., Poole, D.: Qualitative probabilistic matching with hierarchical descriptions. In: KR 2004, Whistler, BC, Canada (2004),
  34. Smyth, C., Poole, D., Sharma, R.: Semantic e-science and geology. In: AAAI 2007 Semantic e-Science workshop (2007),
  35. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)Google Scholar
  36. Struik, L., Quat, M., Davenport, P., Okulitch, A.: A preliminary scheme for multihierarchical rock classification for use with thematic computer-based query systems. Current Research 2002-D10, Geological Survey of Canada (2002), ludaesch/289F-SQ06/handouts/GSC_D10_ 2002.pdfGoogle Scholar
  37. Tang, H., Ng, J.H.K.: Googling for a diagnosis–use of google as a diagnostic aid: internet based study. BMJ (2006), doi:10.1136/bmj.39003.640567.AEGoogle Scholar
  38. Whorf, B.L.: Science and linguistics. Technology Review 42(6), 229–231, 247–248 (1940)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Poole
    • 1
  • Clinton Smyth
    • 2
  • Rita Sharma
    • 2
  1. 1.Department of Computer ScienceUniversity of British ColumbiaCanada
  2. 2.Georeference Online Ltd.Canada

Personalised recommendations