Towards Machine Learning on the Semantic Web

  • Volker Tresp
  • Markus Bundschus
  • Achim Rettinger
  • Yi Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5327)

Abstract

In this paper we explore some of the opportunities and challenges for machine learning on the Semantic Web. The Semantic Web provides standardized formats for the representation of both data and ontological background knowledge. Semantic Web standards are used to describe meta data but also have great potential as a general data format for data communication and data integration. Within a broad range of possible applications machine learning will play an increasingly important role: Machine learning solutions have been developed to support the management of ontologies, for the semi-automatic annotation of unstructured data, and to integrate semantic information into web mining. Machine learning will increasingly be employed to analyze distributed data sources described in Semantic Web formats and to support approximate Semantic Web reasoning and querying. In this paper we discuss existing and future applications of machine learning on the Semantic Web with a strong focus on learning algorithms that are suitable for the relational character of the Semantic Web’s data structure. We discuss some of the particular aspects of learning that we expect will be of relevance for the Semantic Web such as scalability, missing and contradicting data, and the potential to integrate ontological background knowledge. In addition we review some of the work on the learning of ontologies and on the population of ontologies, mostly in the context of textual data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)Google Scholar
  2. 2.
    van Harmelen, F.: Semantische Techniken stehen kurz vor dem Durchbruch. C’T Magazine (2007)Google Scholar
  3. 3.
    Fensel, D., Hendler, J.A., Lieberman, H., Wahlster, W.: Spinning the Semantic Web: Bringing the World Wide Web to its Full Potential. MIT Press, Cambridge (2003)Google Scholar
  4. 4.
    Ontoprise: Neue Version des von Ontoprise entwickelten Ratgebersystems beschleunigt die Roboterwartung. Ontoprise Pressemitteilung (2007)Google Scholar
  5. 5.
    LarKC: The large Knowledge Collider. EU FP 7 Large-Scale Integrating Project (2008), http://www.larkc.eu/
  6. 6.
    Incubator Group: Uncertainty Reasoning for the World Wide Web. W3C (2005), http://www.w3.org/2005/Incubator/urw3/
  7. 7.
    Berendt, B., Hotho, A., Stumme, G.: Towards semantic web mining. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Grobelnik, M., Mladenic, D.: Automated knowledge discovery in advanced knowledge management. Library Hi Tech News incorporating Online and CD Notes 9(5) (2005)Google Scholar
  9. 9.
    Grobelnik, M., Mladenic, D.: Knowledge discovery for ontology construction. In: Davies, J., Studer, R., Warren, P. (eds.) Semantic Web Technologies. Wiley, Chichester (2006)Google Scholar
  10. 10.
    Bloehdorn, S., Haase, P., Sure, Y., Voelker, J.: Ontology evolution. In: Davies, J., Studer, R., Warren, P. (eds.) Semantic Web Technologies. Wiley, Chichester (2006)Google Scholar
  11. 11.
    Bruijn, J.d., Ehrig, M., Feier, C., Martin-Recuerda, F., Scharffe, F., Weiten, M.: Ontology mediation, merging, and aligning. In: Davies, J., Studer, R., Warren, P. (eds.) Semantic Web Technologies. Wiley, Chichester (2006)Google Scholar
  12. 12.
    Fortuna, B., Grobelnik, M., Mladenic, D.: Ontogen: Semi-automatic ontology editor. In: HCI (9) (2007)Google Scholar
  13. 13.
    Mladenic, D., Grobelnik, M., Foruna, B., Grcar, M.: Knowledge discovery for the semantic web (submitted, 2008)Google Scholar
  14. 14.
    Lisi, F.A.: Principles of inductive reasoning on the semantic web: A framework for learning in AL-Log. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Lisi, F.A.: A methodology for building semantic web mining systems. In: The 16th International Symposium on Methodologies for Intelligent Systems (2006)Google Scholar
  16. 16.
    Lisi, F.A.: Practice of inductive reasoning on the semantic web: A system for semantic web mining. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Lisi, F.A.: The challenges of the semantic web to machine learning and data mining. In: Tutorial at ECML 2006 (2006)Google Scholar
  18. 18.
    Fukushige, Y.: Representing probabilistic relations in rdf. In: ISWC-URSW (2005)Google Scholar
  19. 19.
    Getoor, L., Friedman, N., Koller, D., Pferrer, A., Taskar, B.: Probabilistic relational models. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)Google Scholar
  20. 20.
    Rettinger, A., Nickles, M., Tresp, V.: A statistical relational model for trust learning. In: Proceeding of 7th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008 (2008)Google Scholar
  21. 21.
    W3C: World Wide Web Consortium, http://www.w3.org/
  22. 22.
    Antoniou, G., van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge (2004)Google Scholar
  23. 23.
    Herman, I.: Tutorial on the Semantic Web. W3C, http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/Slides.pdf
  24. 24.
    Tauberer, J.: Resource Description Framework, http://rdfabout.com/
  25. 25.
    Kiryakov, A.: Measurable targets for scalable reasoning. Ontotext Technology White Paper (2007)Google Scholar
  26. 26.
    Fahrmeir, L., Künstler, R., Pigeot, I., Tutz, G., Caputo, A., Lang, S.: Arbeitsbuch Statistik, 4th edn. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Casella, G., Berger, R.L.: Statistical Inference. Duxbury Press (1990)Google Scholar
  28. 28.
    Trochim, W.: The Research Methods Knowledge Base, 2nd edn. Atomic Dog Publishing (2000)Google Scholar
  29. 29.
    Popescul, A., Ungar, L.H.: Feature generation and selection in multi-relational statistical learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)Google Scholar
  30. 30.
    Karalič, A., Bratko, I.: First order regression. Machine Learning 26(2-3) (1997)Google Scholar
  31. 31.
    Reckow, S., Tresp, V.: Integrating ontological prior knowledge into relational learning. Technical report, Siemens (2007)Google Scholar
  32. 32.
    Tresp, V.: Committee machines. In: Hu, Y.H., Hwang, J.N. (eds.) Handbook for Neural Network Signal Processing. CRC Press, Boca Raton (2001)Google Scholar
  33. 33.
    Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley, Chichester (2002)MATHGoogle Scholar
  34. 34.
    Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine (Special Issue on AI and Networks), forthcoming (forthcoming, 2008)Google Scholar
  35. 35.
    Macskassy, S., Provost, F.: Classification in networked data: a toolkit and a univariate case study. Machine Learning (2007)Google Scholar
  36. 36.
    Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: SIGMOD (1998)Google Scholar
  37. 37.
    Neville, J., Jensen, D.: Iterative classification in relational data. In: AAAI (2000)Google Scholar
  38. 38.
    Lu, Q., Getoor, L.: Link-based classification. In: ICML (2003)Google Scholar
  39. 39.
    Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of link structure. journal of machine learning research. Journal of Machine Learning Research (2002)Google Scholar
  40. 40.
    Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Uncertainty in Artificial Intelligence, UAI (2002)Google Scholar
  41. 41.
    Zhu, X.: Semi-supervised learning literature survey. Technical report, Technical Report 1530, Department of Computer Sciences, University of Wisconsin (2005)Google Scholar
  42. 42.
    Neville, J., Jensen, D.: Dependency networks for relational data. In: ICDM 2004: Proceedings of the Fourth IEEE International Conference on Data Mining (2004)Google Scholar
  43. 43.
    Neville, J., Jensen, D.: Relational dependency networks. Journal of Machine Learning Research (2007)Google Scholar
  44. 44.
    Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5(3) (1990)Google Scholar
  45. 45.
    Džeroski, S.: Inductive logic programming in a nutshell. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)Google Scholar
  46. 46.
    Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13(3-4) (1995)Google Scholar
  47. 47.
    Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Proceedings of the 1st Conference on Algorithmic Learning Theory, Ohmsma, Tokyo, Japan (1990)Google Scholar
  48. 48.
    Kramer, S., Lavrac, N., Flach, P.: From propositional to relational data mining. In: Džeroski, S., Lavrac, L. (eds.) Relational Data Mining. Springer, Heidelberg (2001)Google Scholar
  49. 49.
    De Raedt, L.: Attribute-value learning versus inductive logic programming: The missing links (extended abstract). In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  50. 50.
    Lavrač, N., Džeroski, S., Grobelnik, M.: Learning nonrecursive definitions of relations with LINUS. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482. Springer, Heidelberg (1991)Google Scholar
  51. 51.
    Van Laer, W., De Raedt, L.: How to upgrade propositional learners to first order logic: A case study. In: Machine Learning and Its Applications, Advanced Lectures (2001)Google Scholar
  52. 52.
    De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  53. 53.
    Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101(1-2) (1998)Google Scholar
  54. 54.
    Emde, W., Wettschereck, D.: Relational instance based learning. In: Saitta, L. (ed.) Machine Learning - Proceedings 13th International Conference on Machine Learning (1996)Google Scholar
  55. 55.
    Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating naïve bayes and FOIL. In: Veloso, M., Kambhampati, S. (eds.) Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI 2005) (2005)Google Scholar
  56. 56.
    Landwehr, N., Passerini, A., De Raedt, L., Frasconi: kFOIL: Learning simple relational kernels. In: National Conference on Artificial Intelligence (AAAI) (2006)Google Scholar
  57. 57.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experimental results. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR 1994) (1994)Google Scholar
  58. 58.
    Rouveirol, C., Ventos, V.: Towards learning in CARIN-ALN. In: International Workshop on Inductive Logic Programming (2000)Google Scholar
  59. 59.
    Edwards, P., Grimnes, G., Preece, A.: An empirical investigation of learning from the semantic web. In: ECML/PKDD, Semantic Web Mining Workshop (2002)Google Scholar
  60. 60.
    Takacs, G., Pilaszy, I., Nemeth, B., Tikk, D.: On the gravity recommendation system. In: Proceedings of KDD Cup and Workshop 2007 (2007)Google Scholar
  61. 61.
    Lippert, C., Huang, Y., Weber, S.H., Tresp, V., Schubert, M., Kriegel, H.P.: Relation prediction in multi-relational domains using matrix factorization. Technical report, Siemens (2008)Google Scholar
  62. 62.
    Yu, K., Chu, W., Yu, S., Tresp, V., Xu, Z.: Stochastic relational models for discriminative link prediction. In: Advances in Neural Information Processing Systems 19 (2006)Google Scholar
  63. 63.
    Yu, S., Yu, K., Tresp, V.: Soft clustering on graphs. In: Advances in Neural Information Processing Systems 18 (2005)Google Scholar
  64. 64.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of 18th International Conference on Machine Learning (2001)Google Scholar
  65. 65.
    Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proceedings of the National Conference on Artificial Intelligence (AAAI) (1998)Google Scholar
  66. 66.
    Kersting, K., De Raedt, L.: Bayesian logic programs. Technical report, Albert-Ludwigs University at Freiburg (2001)Google Scholar
  67. 67.
    Jaeger, M.: Relational bayesian networks. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI) (1997)Google Scholar
  68. 68.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2) (2006)Google Scholar
  69. 69.
    Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)Google Scholar
  70. 70.
    De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26 (1997)Google Scholar
  71. 71.
    Xu, Z., Tresp, V., Yu, K., Kriegel, H.P.: Infinite hidden relational models. In: Uncertainty in Artificial Intelligence (UAI) (2006)Google Scholar
  72. 72.
    Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of concepts with an infinite relational model. In: Poceedings of the National Conference on Artificial Intelligence (AAAI) (2006)Google Scholar
  73. 73.
    Buitelaar, P., Cimiano, P.: Ontology Learning and Population: Bridging the Gap between Text and Knowledge. IOS Press, Amsterdam (2008)MATHGoogle Scholar
  74. 74.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer, Heidelberg (2006)Google Scholar
  75. 75.
    Sowa, J.F.: Ontology, metadata, and semiotics. In: International Conference on Computational Science (2000)Google Scholar
  76. 76.
    Biemann, C.: Ontology learning from text: A survey of methods. LDV Forum 20(2) (2005)Google Scholar
  77. 77.
    Völker, J., Haase, P., Hitzler, P.: Learning expressive ontologies. In: Buitelaar, P., Cimiano, P. (eds.) Ontology Learning and Population: Bridging the Gap between Text and Knowledge. IOS Press, Amsterdam (2008)Google Scholar
  78. 78.
    Harris, Z.S.: Mathematical Structures of Language. Wiley, Chichester (1968)MATHGoogle Scholar
  79. 79.
    Hindle, D.: Noun classification from predicate-argument structures. In: Meeting of the Association for Computational Linguistics (1990)Google Scholar
  80. 80.
    Cimiano, P., Staab, S.: Learning concept hierarchies from text with a guided agglomerative clustering algorithm. In: Proceedings of the ICML 2005 Workshop on Learning and Extending Lexical Ontologies with Machine Learning Methods (2005)Google Scholar
  81. 81.
    Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: KDD Workshop on Text Mining (2000)Google Scholar
  82. 82.
    Maedche, A., Staab, S.: Semi-automatic engineering of ontologies from text. In: Proceedings of the 12th International Conference on Software Engineering and Knowledge Engineering (2000)Google Scholar
  83. 83.
    Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divise and agglomerative clustering for learning taxonomies from text. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004 (2004)Google Scholar
  84. 84.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1997)MATHGoogle Scholar
  85. 85.
    Cimiano, P., Staab, S.: Learning concept hierarchies from text with a guided agglomerative clustering algorithm. In: Biemann, C., Paas, G. (eds.) Proceedings of the ICML 2005 Workshop on Learning and Extending Lexical Ontologies with Machine Learning Methods (2005)Google Scholar
  86. 86.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th conference on Computational linguistics (1992)Google Scholar
  87. 87.
    Paaß, G., Kindermann, J., Leopold, E.: Learning prototype ontologies by hierachical latent semantic analysis. In: Knowledge Discovery and Ontologies (2004)Google Scholar
  88. 88.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41 (1990)Google Scholar
  89. 89.
    Hofmann, T.: Probabilistic latent semantic analysis. In: Uncertainty in Artificial Intelligence (UAI) (1999)Google Scholar
  90. 90.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3 (2003)Google Scholar
  91. 91.
    Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. USA (2004)Google Scholar
  92. 92.
    Blei, D.M., Griffiths, T.L., Jordan, M.I., Tenenbaum, J.B.: Hierarchical topic models and the nested chinese restaurant process. In: Advances in Neural Information Processing Systems (2003)Google Scholar
  93. 93.
    Mei, Q., Shen, X., Zhai, C.: Automatic labeling of multinomial topic models. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (2007)Google Scholar
  94. 94.
    Bontcheva, K., Cunningham, H., Kiryakov, A., Tablan, V.: Semantic annotation and human language technology. In: Davies, J., Studer, R., Warren, P. (eds.) Semantic Web Technologies. Wiley, Chichester (2006)Google Scholar
  95. 95.
    McCallum, A.: Information extraction: distilling structured data from unstructured text. Queue 3(9) (2005)Google Scholar
  96. 96.
    Grishman, R., Sundheim, B.: Design of the MUC-6 evaluation. In: MUC6 1995: Proceedings of the 6th conference on Message understanding (1995)Google Scholar
  97. 97.
    Erik, F., Sang, T., De Meulder, F.: Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL 2003 (2003)Google Scholar
  98. 98.
    Yeh, A., Morgan, A., Colosimo, M., Hirschman, L.: Biocreative task 1a: gene mention finding evaluation. BMC Bioinformatics 6 (2005)Google Scholar
  99. 99.
    Mayfield, J., McNamee, P., Piatko, C.: Named entity recognition using hundreds of thousands of features. In: Proceedings of the seventh conference on natural language learning (2003)Google Scholar
  100. 100.
    Ray, S., Craven, M.: Representing sentence structure in hidden markov models for information extraction. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001)Google Scholar
  101. 101.
    Lin, Y.F., Tsai, T.H., Chou, W.C., Wu, K.P., Sung, T.Y., Hsu, W.L.: A maximum entropy approach to biomedical named entity recognition. In: Proceedings of 4th ACM SIGKDD Workshop on Data Mining in Bioinformatics (BioKDD) (2004)Google Scholar
  102. 102.
    Cimiano, P., Völker, J.: Towards large-scale, open-domain and ontology-based named entity classification. In: Angelova, G., Bontcheva, K., Mitkov, R., Nicolov, N. (eds.) Proceedings of the International Conference on Recent Advances in Natural Language Processing, RANLP (2005)Google Scholar
  103. 103.
    Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  104. 104.
    Ando, R.K., Zhang, T.: A high-performance semi-supervised learning method for text chunking. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (2005)Google Scholar
  105. 105.
    Kristjansson, T.T., Culotta, A., Viola, P.A., McCallum, A.: Interactive information extraction with constrained conditional random fields. In: Nineteenth National Conference on Artificial Intelligence (AAAI) (2004)Google Scholar
  106. 106.
    Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom, J.: Swoosh: A generic approach to entity resolution. VLDB Journal (2008)Google Scholar
  107. 107.
    Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM Transactions on Knowledge Discovery from Data 1(1) (2007)Google Scholar
  108. 108.
    Bhattacharya, I., Getoor, L.: A latent dirichlet model for unsupervised entity resolution. In: SIAM SDM 2006 (2006)Google Scholar
  109. 109.
    Zhou, G., Su, J., Zhang, J., Zhang, M.: Exploring various knowledge in relation extraction. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (2005)Google Scholar
  110. 110.
    Ramani, A.K., Bunescu, R.C., Mooney, R.J., Marcotte, E.M.: Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol. 6(5) (2005)Google Scholar
  111. 111.
    Bunescu, R.C., Mooney, R.J.: Subsequence kernels for relation extraction. In: Advances in Neural Information Processing Systems (2005)Google Scholar
  112. 112.
    Ono, T., Hishigaki, H., Tanigami, A., Takagi, T.: Automated extraction of information on protein-protein interactions from the biological literature. Bioinformatics 17(2) (2001)Google Scholar
  113. 113.
    Bundschus, M., Dejori, M., Stetter, M., Tresp, V., Kriegel, H.: Extraction of semantic biomedical relations from text using conditional random fields. BMC Bioinformatics 9 (2008)Google Scholar
  114. 114.
    Brickley, D., Miller, L.: The Friend of a Friend (FOAF) project, http://www.foaf-project.org/
  115. 115.
    Brickley, D., Miller, L.: FOAF Vocabulary Specification, http://xmlns.com/foaf/spec/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Volker Tresp
    • 1
  • Markus Bundschus
    • 2
  • Achim Rettinger
    • 3
  • Yi Huang
    • 1
  1. 1.Siemens AG, Corporate Technology, Information and Communications, Learning SystemsMunichGermany
  2. 2.Ludwig-Maximilian University MunichGermany
  3. 3.Technical University of MunichGermany

Personalised recommendations