Advertisement

A Fuzzy Semantics for the Resource Description Framework

  • Mauro Mazzieri
  • Aldo Franco Dragoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5327)

Abstract

Semantic Web languages cannot currently represent vague or uncertain information. However, their crisp model-theoretic semantics can be extended to represent uncertainty in much the same way first-order logic was extended to fuzzy logic. We show how the interpretation of an RDF graph (or an RDF Schema ontology) can be a matter of values, addressing a common problem in real-life knowledge management. While unmodified RDF triples can be interpreted according to the new semantics, an extended syntax is needed in order to store fuzzy membership values within the statements. We give conditions an extended interpretation must meet to be a model of an extended graph. Reasoning in the resulting fuzzy languages can be implemented by current inferencers with minimal adaptations.

Keywords

Fuzzy Logic Knowledge Representation Semantic Web RDF RDF Schema 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American, 28–37 (May 2001)Google Scholar
  2. 2.
    Berners-Lee, T.: What the semantic web can represent. W3C design issues, World Wide Web Consortium (September 1998)Google Scholar
  3. 3.
    Hayes, P.: RDF Semantics. Recommendation, W3C (February 10, 2004)Google Scholar
  4. 4.
    Bechhofeer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-Schneider, P., Stein, L.A.: OWL web ontology language reference. Recommendation, W3C (February 10, 2004)Google Scholar
  5. 5.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. J. of Web Semantics 4(1) (2004)Google Scholar
  6. 6.
    Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Reiter, R., Myopoulos, J. (eds.) Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pp. 472–477 (1991)Google Scholar
  7. 7.
    Straccia, U.: Reasoning within fuzzy description logics. J. of Artificial Intelligence Research 14, 137–166 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Straccia, U.: Towards a fuzzy description logic for the semantic web (preliminary report). In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 167–181. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: Fuzzy OWL: Uncertainty and the semantic web. In: Proc. of the Int. Workshop of OWL: Experiences and Directions, Galway, Ireland (2005)Google Scholar
  10. 10.
    Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proc. of the 13th European Conf. on Artificial Intelligence (ECAI’98), pp. 361–365. J. Wiley and Sons, Chichester (1998)Google Scholar
  11. 11.
    Sánchez, D., Tettamanzi, A.: Generalizing quantification in fuzzy description logics. Computational Intelligence, Theory and Applications, 397–411 (2005)Google Scholar
  12. 12.
    Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy description logic for multimedia knowledge representation. In: Int. Workshop on Multimedia and the Semantic Web (2005)Google Scholar
  13. 13.
    Hölldobler, S., Khang, T.D., Störr, H.P.: A fuzzy description logic with hedges as concept modifiers. In: Proc. InTech/VJFuzzy 2002, pp. 25–34 (2002)Google Scholar
  14. 14.
    Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: The fuzzy description logic f-\(\mathcal{SHIN}\). In: ISWC Workshop on Uncertainty Reasoning for the Semantic Web, Galway, Ireland, November 7 2005. CEUR Workshop Proceedings, vol. 173, pp. 67–76 (2005)Google Scholar
  15. 15.
    Gao, M., Liu, C.: Extending OWL by fuzzy descripion logic. In: Proc. of the 17th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI 2005), Hong Kong, China, pp. 562–567. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  16. 16.
    Stoilos, G., Straccia, U., Stamou, G., Pan, J.Z.: General concept inclusions in fuzzy description logics. In: Proc. of the 17th European Conf. on Artificial Intelligence (ECAI 2006), pp. 457–461. IOS Press, Amsterdam (2006)Google Scholar
  17. 17.
    Stoilos, G., Stamou, G., Pan, J.: Handling imprecise knowledge with fuzzy description logic. In: Proc. of DL 2006 (2006)Google Scholar
  18. 18.
    Stoilos, G., Stamou, G.: Extending fuzzy description logics for the semantic web-based. In: Proc. of the 3rd Int. Workshop on OWL: Experience and Direction, OWLED 2007 (2007)Google Scholar
  19. 19.
    Mazzieri, M.: A fuzzy RDF semantics to represent trust metadata. In: 1st Workshop on Semantic Web Applications and Perspectives (SWAP 2004), Ancona, Italy, December 10, 2004, pp. 83–89 (2004)Google Scholar
  20. 20.
    Mazzieri, M., Dragoni, A.F.: A fuzzy semantics for semantic web languages. In: ISWC Workshop on Uncertainty Reasoning for the Semantic Web, Galway, Ireland, November 7, 2005. CEUR Workshop Proceedings, vol. 173, pp. 12–22 (2005)Google Scholar
  21. 21.
    Udrea, O., Recupero, D.R., Subrahmanian, V.: Annotated RDF. ACM Transactions on Computational Logic (submitted)Google Scholar
  22. 22.
    Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and abstract syntax. W3C recommendation, World Wide Web Consortium (February 2004)Google Scholar
  23. 23.
    Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI): Generic syntax. RFC 2396, IETF (August 1998)Google Scholar
  24. 24.
    Goldfarb, W.D. (ed.): Logical Writings of Jacques Herbrand. Harvard University Press, Cambridge (1971)Google Scholar
  25. 25.
    Zadeh, L.: A fuzzy set theoretic interpretation of linguistic hedges. J. of Cybernetics 2(3), 4–34 (1972)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dubois, D., Prade, H.: A class of fuzzy measures based on triangular norms. Int. J. of General Systems 8, 43–61 (1982)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zimmermann, H.J.: Fuzzy Set Theory— and Its Applications, 3rd edn. Kluwer Academic Publishers, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  28. 28.
    Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic, 2nd edn. Chapman & Hall/CRC, Boca Raton (2000)zbMATHGoogle Scholar
  29. 29.
    Grant, J., Beckett, D.: RDF test cases. W3C recommendation, World Wide Web Consortium (February 10, 2004)Google Scholar
  30. 30.
    Beckett, D.: RDF/XML syntax specification (revised). W3C recommendation, World Wide Web Consortium (February 2004)Google Scholar
  31. 31.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, New York (1980)zbMATHGoogle Scholar
  33. 33.
    Zadeh, L.A.: Calculus of Fuzzy Restrictions. In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes, pp. 1–39. Academic Press, New York (1975)CrossRefGoogle Scholar
  34. 34.
    Burillo, P., Frago, N., Fuentes, R.: Inclusion grade and fuzzy implication operators. Fuzzy Sets and Systems 114(3), 417–429 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing and quering RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  36. 36.
    Broekstra, J., Kampman, A.: Inferencing and truth maintenance in RDF Schema: exploring a naive practical approach. In: Workshop on Practical and Scalable Semantic Systems (PSSS 2003). 2nd Int. Semantic Web Conf. (ISWC 2003), Sanibel Island, Florida, USA, October 20–24 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mauro Mazzieri
    • 1
  • Aldo Franco Dragoni
    • 1
  1. 1.Università Politecnica delle MarcheItaly

Personalised recommendations