Advertisement

Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC

  • Mridul Nandi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5365)

Abstract

Online ciphers are those ciphers whose ciphertexts can be computed in real time by using a length-preserving encryption algorithm. HCBC1 and HCBC2 are two known examples of Hash Cipher Block Chaining online ciphers. The first construction is secure against chosen plaintext adversary (or called CPA-secure) whereas the latter is secure against chosen ciphertext adversary (or called CCA-secure). In this paper, we have provided simple security analysis of these online ciphers. We have also proposed two new more efficient chosen ciphertext secure online ciphers modified-HCBC (MHCBC) and modified-CBC (MCBC). If one uses a finite field multiplication based universal hash function, the former needs one less key and one less field multiplication compared to HCBC2. The MCBC does not need any universal hash function and it needs only one blockcipher key unlike the other three online ciphers where two independent keys (hash function and blockcipher) are required.

Keywords

online cipher CBC universal hash function random permutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: On-Line Ciphers and the Hash-CBC constructions. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 292–309. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: On-Line Ciphers and the Hash-CBC Constructions. Cryptology eprint archive, http://eprint.iacr.org/2007/197
  3. 3.
    Bellare, M., Killan, J., Rogaway, P.: The security of the cipher block chanining Message Authentication Code. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Black, J., Rogaway, P.: CBC MACs for arbitrary length messages. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Daemen, J., Rijmen, V.: Resistance Against Implementation Attacks. A Comparative Study of the AES Proposals. In: Proceedings of the Second AES Candidate Conference (AES2), Rome, Italy (March 1999), http://csrc.nist.gov/encryption/aes/aes_home.htm
  6. 6.
    Knudsen, L.: Block chaining modes of operation. In: Symmetric Key Block Cipher Modes of Operation Workshop (October 2000), http://csrc.nist.gov/encryption/modes/workshop1/
  7. 7.
    Krawczyk, H.: LFSR-based hashing and authenticating. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, p. 447. Springer, Heidelberg (1986)Google Scholar
  9. 9.
    Nandi, M.: Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC. eprint archive, http://eprint.iacr.org/2008/401
  10. 10.
    Nevelsteen, W., Preneel, B.: Software performance of universal hash functions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 24–41. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Stinson, D.R.: On the connections between universal hashing, combinatorial designs and error-correcting codes. Congressus Numerantium 114, 7–27 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. Journal of Cryptology 16(4), 249–286 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mridul Nandi
    • 1
  1. 1.National Institute of Standards and TechnologyUSA

Personalised recommendations