A Differential-Linear Attack on 12-Round Serpent

  • Orr Dunkelman
  • Sebastiaan Indesteege
  • Nathan Keller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5365)

Abstract

Serpent is an SP Network block cipher submitted to the AES competition and chosen as one of its five finalists. The security of Serpent is widely acknowledged, especially as the best known attack so far is a differential-linear attack on only 11 rounds out of the 32 rounds of the cipher.

In this paper we introduce a more accurate analysis of the differential-linear attack on 11-round Serpent. The analysis involves both theoretical aspects as well as experimental results which suggest that previous attacks had overestimated complexities. Following our findings we are able to suggest an improved 11-round attack with a lower data complexity. Using the new results, we are able to devise the first known attack on 12-round Serpent.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R., Biham, E., Knudsen, L.R.: Serpent: A Proposal for the Advanced Encryption Standard, NIST AES Proposal (1998)Google Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
  3. 3.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology 7(4), 229–246 (1994)CrossRefMATHGoogle Scholar
  4. 4.
    Biham, E.: On Matsui’s Linear Cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Biham, E., Dunkelman, O., Keller, N.: Enhancing Differential-Linear Cryptanalysis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Biham, E., Dunkelman, O., Keller, N.: Differential-Linear Cryptanalysis of Serpent. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and Multiple Linear Cryptanalysis of Reduced Round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 51–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Collard, B., Standaert, F.-X., Quisquater, J.-J.: Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 382–397. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Langford, S.K.: Differential-Linear Cryptanalysis and Threshold Signatures, Ph.D. thesis (1995)Google Scholar
  15. 15.
    Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Selçuk, A.A.: On Probability of Success in Linear and Differential Cryptanalysis. Journal of Cryptology 21(1), 131–147 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Orr Dunkelman
    • 1
  • Sebastiaan Indesteege
    • 2
  • Nathan Keller
    • 3
  1. 1.Département d’Informatique, CNRS, INRIAÉcole Normale SupérieureParisFrance
  2. 2.Department of Electrical Engineering ESAT/SCD-COSIC KasteelparkKatholieke Universiteit LeuvenLeuven-HeverleeBelgium
  3. 3.Einstein Institute of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations