Advertisement

A Z-Score Based Multi-level Spatial Clustering Algorithm for the Detection of Disease Outbreaks

  • Jialan Que
  • Fu-Chiang Tsui
  • Jeremy Espino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5354)

Abstract

In this paper, we propose a Z-Score Based Multi-level Spatial Clustering (ZMSC) algorithm for the early detection of emerging disease outbreaks. Using semi-synthetic data for algorithm evaluation, we compared ZMSC with the Wavelet Anomaly Detector [1], a temporal algorithm, and two spatial clustering algorithms: Kulldorff’s spatial scan statistic [2] and Bayesian spatial scan statistic [3]. ROC curve analysis shows that ZMSC has better discriminatory ability than the three compared algorithms. ZMSC demonstrated significant computational efficiency—1000x times faster than both spatial algorithms. Finally, ZMSC had the highest cluster positive predictive values of all the algorithms. However, ZMSC showed a 0.5-1 day average delay in detection when the false alarm rate was lower than one false alarm for every five days. We conclude that the ZMSC algorithm improves current methods of spatial cluster detection by offering better discriminatory ability, faster performance and more exact cluster identification.

Keywords

Spatial clustering outbreak detection biosurveillance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, J., Tsui, F.C., Wagner, M.M., Hogan, W.R.: Detection of Outbreaks from Time Series Data Using Wavelet Transform. In: AMIA Annual Symposium Proceeding, pp. 748–752 (2003)Google Scholar
  2. 2.
    Kulldorff, M.: A Spatial Scan Statistic. Communications in Statistics. Theory and Methods 26(6), 1481–1496 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Neill, D.B., Moore, A.W., Cooper, G.F.: A Bayesian Spatial Scan Statistic. In: Advances in Neural Information Processing Systems, vol. 18, pp. 1003–1010 (2005)Google Scholar
  4. 4.
    Hunter, J.S.: The Exponentially Weighted Moving Average. Journal of Quality Technology 18, 155–162 (1986)Google Scholar
  5. 5.
    Hawkins, D.M., Olwell, D.H.: Cumulative Sum Charts and Charting for Quality Improvement. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Wagner, M.M., Moore, A.W., Aryel, R.M.: Handbook of Biosurveillance. Elsevier, Amsterdam (2006)Google Scholar
  7. 7.
    Buckeridge, D.L., Burkom, H., Campbell, M., Hogan, W.R., Moore, A.W.: Algorithms for Rapid Outbreak Detection: a Research Synthesis. Journal of Biomedical Informatics 38(2), 99–113 (2005)CrossRefGoogle Scholar
  8. 8.
    Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  9. 9.
    Kunihiko, T., Martin, K., Toshiro, T., Katherine, Y.: A Flexibly Shaped Space-Time Scan Statistic for Disease Outbreak Detection and Monitoring. International Journal of Health Geographics 7(14) (2008)Google Scholar
  10. 10.
    Kulldorff, M., Huang, L., Pickle, L., Duczmal, L.: An Elliptic Spatial Scan Statistic. Statistics in Medicine 25(22), 3929–3943 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tango, T., Takahashi, K.: A Flexible Shaped Spatial scan Statistic for Detecting Clusters. International Journal of Health Geographics 4(11) (2005)Google Scholar
  12. 12.
    Zeng, D., Chang, W., Chen, H.: A Comparative Study of Spatio-Temporal Hotspot Analysis Techniques in Security Informatics. IEEE ITSC, 106–111 (2004)Google Scholar
  13. 13.
    Siegrist, D., Pavlin, J.: Bio-ALIRT biosurveillance detection algorithm evaluation. MMWR Morb Mortal Wkly Rep. 24(53) (suppl.), 152–158 (2004)Google Scholar
  14. 14.
    Kulldorff, M., Heffernan, R., Hartman, J., Assuncão, R., Mostashari, F.: A Space-Time Permutation Scan Statistic for Disease Outbreak Detection. PLoS medicine 2(3) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jialan Que
    • 1
  • Fu-Chiang Tsui
    • 1
  • Jeremy Espino
    • 1
  1. 1.RODS Laboratory, Department of Biomedical InformaticsUniversity of PittsburghPittsburghUSA

Personalised recommendations