Crossover Can Be Constructive When Computing Unique Input Output Sequences

  • Per Kristian Lehre
  • Xin Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5361)


Unique input output (UIO) sequences have important applications in conformance testing of finite state machines (FSMs). Previous experimental and theoretical research has shown that evolutionary algorithms (EAs) can compute UIOs efficiently on many FSM instance classes, but fail on others. However, it has been unclear how and to what degree EA parameter settings influence the runtime on the UIO problem. This paper investigates the choice of acceptance criterion in the (1+1) EA and the use of crossover in the (μ+1) Steady State Genetic Algorithm. It is rigorously proved that changing these parameters can reduce the runtime from exponential to polynomial for some instance classes.


Input Sequence Acceptance Criterion Vertex Cover Crossover Probability Search Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehre, P.K., Yao, X.: Runtime analysis of (1+1) EA on computing unique input output sequences. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 1882–1889 (2007)Google Scholar
  2. 2.
    Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)CrossRefGoogle Scholar
  3. 3.
    Clark, J.A., Dolado, J.J., Harman, M., Hierons, R.M., Jones, B., Lumkin, M., Mitchell, B., Mancoridis, S., Rees, K., Roper, M., Shepperd, M.: Reformulating software engineering as a search problem. IEE Proceedings-Software 150(3), 161–175 (2003)CrossRefGoogle Scholar
  4. 4.
    Derderian, K.A., Hierons, R.M., Harman, M., Guo, Q.: Automated unique input output sequence generation for conformance testing of fsms. The Computer Journal 49(3), 331–344 (2006)CrossRefGoogle Scholar
  5. 5.
    Guo, Q., Hierons, R.M., Harman, M., Derderian, K.A.: Computing unique input/output sequences using genetic algorithms. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 164–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Guo, Q., Hierons, R.M., Harman, M., Derderian, K.A.: Constructing multiple unique input/output sequences using metaheuristic optimisation techniques. IEE Proceedings Software 152(3), 127–140 (2005)CrossRefGoogle Scholar
  7. 7.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Transactions on Evolutionary Computation 5(6), 589–599 (2001)CrossRefGoogle Scholar
  10. 10.
    Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input output sequences. Technical Report (CSR-08-08), University of Birmingham, School of Computer Science (2008)Google Scholar
  11. 11.
    Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34(1), 47–66 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Storch, T., Wegener, I.: Real royal road functions for constant population size. Theoretical Computer Science 320(1), 123–134 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fischer, S., Wegener, I.: The one-dimensional ising model: Mutation versus recombination. Theoretical Computer Science 344(2-3), 208–225 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sudholt, D.: Crossover is provably essential for the ising model on trees. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 1161–1167 (2005)Google Scholar
  15. 15.
    Oliveto, P., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for the vertex cover problem. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 2008), Hong Kong, June 1-6 (2008)Google Scholar
  16. 16.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Oliveto, P., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Technical Report Reihe CI, No. CI-247/08, SFB 531, Technische Universität Dortmund, Germany (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Per Kristian Lehre
    • 1
  • Xin Yao
    • 1
  1. 1.The Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA), School of Computer ScienceThe University of BirminghamEdgbastonUnited Kingdom

Personalised recommendations