A Pruning Rule Based on a Distance Sparse Table for Hierarchical Similarity Search Algorithms

  • Eva Gomez-Ballester
  • Luisa Mic
  • Jose Oncina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)

Abstract

Nearest neighbour search is a simple technique widely used in Pattern Recognition tasks. When the dataset is large and/or the dissimilarity computation is very time consuming the brute force approach is not practical. In such cases, some properties of the dissimilarity measure can be exploited in order to speed up the search. In particular, the metric properties of some dissimilarity measures have been used extensively in fast nearest neighbour search algorithms to avoid dissimilarity computations. Recently, a distance table based pruning rule to reduce the average number of distance computations in hierarchical search algorithms was proposed. In this work we show the effectiveness of this rule compared to other state of the art algorithms. Moreover, we propose some guidelines to reduce the space complexity of the rule.

Keywords

fast nearest neighbour search metric space tree-based algorithms pruning rules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  2. 2.
    Gómez-Ballester, E., Micó, L., Oncina, J.: Some improvements in tree based nearest neighbour search algorithms. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 456–463. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Vidal, E.: New formulation and improvements of the nearest-neighbour approximating and eliminating search algorithm (aesa). Pattern Recognition Letters 15(1), 1–7 (1994)CrossRefGoogle Scholar
  4. 4.
    Moreno-Seco, F., Micó, L., Oncina, J.: A modification of the laesa algorithm for approximated k-nn classification. Pattern Recognition Letters 22, 1145–1151 (2003)MATHGoogle Scholar
  5. 5.
    Moreno-Seco, F., Micó, L., Oncina, J.: Approximate nearest neighbour search with the fukunaga and narendra algorithm and its application to chromosome classification. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 322–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Navarro, G.: Searching in metric spaces by spatial approximation. VLDB Journal 11(1), 28–46 (2002)CrossRefGoogle Scholar
  7. 7.
    Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)CrossRefGoogle Scholar
  8. 8.
    Oncina, J., Thollard, F., Gómez-Ballester, E., Micó, L., Moreno-Seco, F.: A tabular pruning rule in tree-based pruning rule fast nearest neighbour search algorithms. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 306–313. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software 3, 209–226 (1977)CrossRefMATHGoogle Scholar
  10. 10.
    Clarkson, K.: Nearest-neighbor searching and metric space dimensions. In: Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, pp. 15–59. MIT Press, Cambridge (2006)Google Scholar
  11. 11.
    Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-nearest neighbors. IEEE Transactions on Computers, IEC 24, 750–753 (1975)CrossRefMATHGoogle Scholar
  12. 12.
    Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and eliminating search algorithm (aesa) with linear preprocessing time and memory requirements. Pattern Recognition Letters 15, 9–17 (1994)CrossRefGoogle Scholar
  13. 13.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd International Conference on VLDB, Athens, Greece, pp. 426–435. Morgan Kaufmann Publishers, San Francisco (1997)Google Scholar
  14. 14.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Springer, Heidelberg (2006)MATHGoogle Scholar
  15. 15.
    Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 311–321 (1993)Google Scholar
  16. 16.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)MATHGoogle Scholar
  17. 17.
    Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21st International Conference on Very Large Data Bases, pp. 574–584 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eva Gomez-Ballester
    • 1
  • Luisa Mic
    • 1
  • Jose Oncina
    • 1
  1. 1.Dept. Lenguajes y Sistemas InformáticosUniversidad de AlicanteAlicanteSpain

Personalised recommendations