Abstract

The combination of different experts is largely used to improve the performance of a pattern recognition system. In the case of experts whose output is a similarity score, different methods had been developed. In this paper, the combination is performed by building a similarity score space made up of the scores produced by the experts, and training a classifier into it. Different techniques based on the use of classifiers trained on the similarity score space are proposed and compared. In particular, they are used in the framework of Dynamic Score Selection mechanisms, recently proposed by the authors. Reported results on two biometric datasets show the effectiveness of the proposed approach.

References

  1. 1.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
  2. 2.
    Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Chichester (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Bradley, A.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)CrossRefGoogle Scholar
  4. 4.
    Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Marrocco, C., Molinara, M., Tortorella, F.: Exploiting AUC for optimal linear combinations of dichotomizers. Pattern Recognition Letters 27(8), 900–907 (2006)CrossRefGoogle Scholar
  6. 6.
    Ross, A., Nandakumar, K., Jain, A.: Handbook of Multibiometrics. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Nandakumar, K., Chen, Y., Dass, S., Jain, A.: Likelihood ratio-based biometric score fusion. IEEE Trans. on PAMI 30(2), 342–347 (2008)CrossRefGoogle Scholar
  8. 8.
    Giacinto, G., Roli, F.: Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition 34(9), 179–181 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Ross, A., Jain, A.K.: Information fusion in biometrics. Pattern Recognition Letters 24, 2115–2125 (2003)CrossRefGoogle Scholar
  10. 10.
    Lumini, A., Nanni, L.: Advanced methods for two-class pattern recognition problem formulation for minutiae-based fingerprint verification. Pattern Recognition Letters 29(2), 142–148 (2008)CrossRefGoogle Scholar
  11. 11.
    Tronci, R., Giacinto, G., Roli, F.: Dynamic Score Selection for Fusion of Multiple Biometric Matchers. In: ICIAP 2007, pp. 15–20 (2007)Google Scholar
  12. 12.
    Maio, D., Maltoni, D., Cappelli, R., Wayman, J., Jain, A.: FVC2004: Third Fingerprint Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roberto Tronci
    • 1
  • Giorgio Giacinto
    • 2
  • Fabio Roli
    • 2
  1. 1.AmiLab Laboratorio Intelligenza d’Ambiente, Sardegna RicerchePulaItaly
  2. 2.DIEE Department of Electrical and Electronic EngineeringUniversity of CagliariCagliariItaly

Personalised recommendations