Advertisement

A Temporal Logic for Stochastic Multi-Agent Systems

  • Wojciech Jamroga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5357)

Abstract

Typical analysis of Markovian models of processes refers only to the expected utility that can be obtained by the process. On the other hand, modal logic offers a systematic method of characterizing processes by combining various modal operators. A multivalued temporal logic for Markov chains and Markov decision processes has been recently proposed in [1]. Here, we discuss how it can be extended to the multi-agent case. We relate the resulting logic to existing (two-valued) logics of strategic ability, and present fixpoint characterizations for some natural combinations of strategic and temporal operators.

Keywords

Temporal logic multi-agent system Markov decision process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jamroga, W.: A temporal logic for Markov chains. In: Proceedings of AAMAS 2008, pp. 697–704 (2008)Google Scholar
  2. 2.
    Jamroga, W.: A temporal logic for multi-agent MDP’s. In: Proceedings of Workshop on Formal Models and Methods for Multi-Robot Systems, pp. 29–34 (2008)Google Scholar
  3. 3.
    Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ruspini, E., Lowrance, J., Strat, T.: Understanding evidential reasoning. Artificial Intelligence 6(3), 401–424 (1992)zbMATHGoogle Scholar
  6. 6.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Aziz, A., Singhal, V., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Halpern, J.Y.: A logical approach to reasoning about uncertainty: a tutorial. In: Arrazola, X., Korta, K., Pelletier, F.J. (eds.) Discourse, Interaction, and Communication, pp. 141–155. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  9. 9.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over inconsistent viewpoints. In: International Conference on Software Engineering, pp. 411–420 (2001)Google Scholar
  11. 11.
    Konikowska, B., Penczek, W.: Model checking for multi-valued computation tree logic. In: Fitting, M., Orlowska, E. (eds.) Beyond Two: Theory and Applications of Multiple Valued Logic, pp. 193–210 (2003)Google Scholar
  12. 12.
    de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. Theoretical Computer Science 345, 139–170 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lluch-Lafuente, A., Montanari, U.: Quantitative μ-calculus and CTL based on constraint semirings. Electr. Notes Theor. Comput. Sci. 112, 37–59 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  15. 15.
    Markov, A.: Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete 2(15), 135–156 (1906)Google Scholar
  16. 16.
    Kemeny, J.G., Snell, L.J., Knapp, A.W.: Denumerable Markov Chains. Van Nostrand (1966)Google Scholar
  17. 17.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time Temporal Logic. Journal of the ACM 49, 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bellman, R.: A Markovian decision process. Journal of Mathematics and Mechanics 6, 679–684 (1957)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  20. 20.
    Boutilier, C.: Sequential optimality and coordination in multiagent systems. In: Proceedings of IJCAI, pp. 478–485 (1999)Google Scholar
  21. 21.
    Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science 85(2) (2004)Google Scholar
  22. 22.
    Moller, F., Rabinovich, A.: On the expressive power of CTL*. In: Proceedings of LICS 1999, pp. 360–369 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Wojciech Jamroga
    • 1
  1. 1.Department of InformaticsClausthal University of TechnologyGermany

Personalised recommendations