On the Pheromone Update Rules of Ant Colony Optimization Approaches for the Job Shop Scheduling Problem

  • Dong Do Duc
  • Huy Q. Dinh
  • Huan Hoang Xuan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5357)


Ant Colony Optimization (ACO) system is an intelligent multi-agent system of the interacting artificial ants to solve the combinatorial optimization problems. Applying ACO approach in the typical NP-hard problem like job shop scheduling (JSS) problem is still an impressive and attractive challenge with the community. This paper proposes two improvements of ACO algorithm based on the convergence property of pheromone trails. Our improvements are better in both terms of accuracy and running time than the state-of-the-art Max-Min ant system by the simulation with the standard data sets.


Ant colony optimization algorithm job shop scheduling problem ACO convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Politechnico di Milano, Italy, Tech. Rep. 91–106 (1991)Google Scholar
  2. 2.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. The IEEE Transactions on Systems, Man and Cybernetics, Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the traveling salesman problem. The IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Di Caro, M.: Ant colony optimization: a new metaheuristic. In: The 1999 Congress on Evolutionary Computation (CEC 1999), vol. 2, pp. 6–9 (1999)Google Scholar
  5. 5.
    Stutzle, T., Hoos, H.: MAX-MIN ant system. The Future Generation Computer Systems 16(9), 889–914 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Stutzle, T., Dorigo, M.: A short convergence proof for a class of ant colony optimization algorithms. The IEEE Transactions on Evolutionary Computation 6(4), 358–365 (2002)CrossRefGoogle Scholar
  7. 7.
    Gutjahr, W.J.: Mathematical runtime analysis of ACO algorithms: survey on an emerging issue. Swarm. Intell. 1, 59–79 (2007)CrossRefGoogle Scholar
  8. 8.
    Huy, D.Q., Dong, D.D., Huan, H.X.: Multi-level ant system - a new approach through the new pheromone update for ant colony optimization. In: The 2006 IEEE Conference on Research, Innovation and Vision for the Future, pp. 55–58 (2006)Google Scholar
  9. 9.
    van der Zwaan, S., Marques, C.: Ant Colony Optimisation for Job Shop Scheduling. In: Proceedings of the Third Workshop on Genetic Algorithms and Artificial Life (GAAL 1999) (1999)Google Scholar
  10. 10.
    Vaessens, R., Aarts, E., Lenstra, J.: Job shop scheduling by local search. INFORMS Journal on Computing, vol 8, 302–317 (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Applegate, D., Cook, W.: A computational study of the job-shop scheduling problem. ORSA Journal on Computing, vol 3(1) (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dong Do Duc
    • 1
  • Huy Q. Dinh
    • 2
    • 3
  • Huan Hoang Xuan
    • 1
  1. 1.Department of Computer Science, College of TechnologyVietnam National University, HanoiHanoiVietnam
  2. 2.Gregor Mendel Institute of Molecular Plant BiologyViennaAustria
  3. 3.Center for Integrative Bioinformatics ViennaViennaAustria

Personalised recommendations