Reasoning about Constitutive Norms, Counts-As Conditionals, Institutions, Deadlines and Violations

  • Guido Boella
  • Jan Broersen
  • Leendert van der Torre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5357)

Abstract

Reasoning about norms and time is of central concern to the regulation or control of the behavior of a multi-agent system. In earlier work we introduce a representation of normative systems that distinguishes between norms and the detached obligations of agents over time. In this paper we consider constitutive norms and the detached counts-as conditionals and institutional facts in this framework, we introduce deadlines in the regulative norms, and we consider the corresponding role of violations. We focus on the reasoning tasks to determine whether a constitutive or regulative norm is redundant in a normative system and whether two normative systems are equivalent. We distinguish counts-as equivalence, institutional equivalence, obligation equivalence and violation equivalence, depending on whether we are interested in all normative consequences, or only a subset of them. For the various notions of equivalence, we give sound and complete characterizations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arcos, J., Esteva, M., Noriega, P., Rodríguez, J., Sierra, C.: Engineering open environments with electronic institutions. Journal on Engineering Applications of Artificial Intelligence 18(2), 191–204 (2005)CrossRefGoogle Scholar
  2. 2.
    Boella, G., van der Torre, L., Verhagen, H. (eds.): Computational and Mathematical Organization Theory. NorMAS 2005, vol. 12(2-3) (2006)Google Scholar
  3. 3.
    Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent systems. In: Procs. of NorMAS 2007, Dagstuhl Seminar proceedings 07122 (2007)Google Scholar
  4. 4.
    Gaudou, B., Longin, D., Lorini, E., Tummolini, L.: Anchoring institutions in agents’ attitudes: Towards a logical framework for autonomous multi-agent systems. In: Procs. of AAMAS 2008 (2008)Google Scholar
  5. 5.
    Grossi, D.: Pushing Anderson’s envelope: The modal logic of ascription. In: van der Meyden, R., van der Torre, L. (eds.) DEON 2008. LNCS, vol. 5076, pp. 263–277. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal of IGPL 3, 427–443 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Searle, J.: Speech Acts: an Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)CrossRefGoogle Scholar
  8. 8.
    Broersen, J., van der Torre, L.: Reasoning about norms, obligations, time and agents. In: Procs. of PRIMA 2007. LNCS. Springer, Heidelberg (to appear)Google Scholar
  9. 9.
    Broersen, J., van der Torre, L.: Conditional norms and dyadic obligations in time. In: Procs. of 18th European Conference on Artificial Intelligence (ECAI 2008) (2008)Google Scholar
  10. 10.
    Makinson, D.: On a fundamental problem of deontic logic. In: McNamara, P., Prakken, H. (eds.) Norms, Logics and Information Systems. New Studies on Deontic Logic and Computer Science, pp. 29–54. IOS (1999)Google Scholar
  11. 11.
    Alchourrón, C., Bulygin, E.: Normative Systems. Springer, Wien (1971)CrossRefMATHGoogle Scholar
  12. 12.
    Broersen, J.: Strategic deontic temporal logic as a reduction to ATL, with an application to chisholm’s scenario. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS, vol. 4048, pp. 53–68. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Broersen, J., Brunel, J.: What I fail to do today, I have to do tomorrow: a logical study of the propagation of obligations. In: Procs. of CLIMA VIII. LNCS, vol. 5056, pp. 82–99. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic. In: ICAIL 2005: Proceedings of the 10th international conference on Artificial intelligence and law, pp. 25–34. ACM, New York (2005)Google Scholar
  15. 15.
    Horty, J.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)CrossRefMATHGoogle Scholar
  16. 16.
    Loewer, B.: Dyadic deontic detachment. Synthese 54, 295–318 (1983)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Makinson, D.: Five faces of minimality. Studia Logica 52, 339–379 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a variant of dynamic logic. Notre Dame Journal of Formal Logic 29(1), 109–136 (1988)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    van Eck, J.: A system of temporally relative modal and deontic predicate logic and its philosophical applications. Logique et Analyse 25, 339–381 (1982)MathSciNetMATHGoogle Scholar
  20. 20.
    Boella, G., van der Torre, L.: A game theoretic approach to contracts in multiagent systems. IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews 36(1), 68–79 (2006)CrossRefGoogle Scholar
  21. 21.
    Ruiter, D.: A basic classification of legal institutions. Ratio Juris 10(4), 357–371 (1997)CrossRefGoogle Scholar
  22. 22.
    Ross, A.: Tû-tû. Harvard Law Review 70(5), 812–825 (1957)CrossRefGoogle Scholar
  23. 23.
    Anderson, A.: A reduction of deontic logic to alethic modal logic. Mind 67, 100–103 (1958)CrossRefGoogle Scholar
  24. 24.
    Boella, G., van der Torre, L.: Substantive and procedural norms in normative multiagent systems. Journal of Applied Logic 6(2), 152–171 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Broersen, J.: On the logic of being motivated to achieve ρ, before δ. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 334–346. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Makinson, D., van der Torre, L.: Input-output logics. Journal of Philosophical Logic 29(4), 383–408 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Makinson, D., van der Torre, L.: Constraints for input-output logics. Journal of Philosophical Logic 30(2), 155–185 (2001)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chisholm, R.: Contrary-to-duty imperatives and deontic logic. Analyse 24, 33–36 (1963)CrossRefGoogle Scholar
  29. 29.
    Forrester, J.: Gentle murder, or the adverbial samaritan. The Journal of Philosophy 81, 193–197 (1984)MathSciNetCrossRefGoogle Scholar
  30. 30.
    van Fraassen, B.: Values and the hearts command. The Journal of Philosophy (1973)Google Scholar
  31. 31.
    Hansen, J., Pigozzi, G., van der Torre, L.: Ten philosophical problems in deontic logic. In: Normative Multi-agent systems, Procs. of NorMAS 2007. Dagstuhl Seminar proceedings 07122 (2007)Google Scholar
  32. 32.
    Alur, R., Henzinger, T., Mang, F.Y.C., Qadeer, S., Rajamani, S., Tasiran, S.: Mocha: Modularity in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  33. 33.
    Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the causal calculator. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guido Boella
    • 1
  • Jan Broersen
    • 2
  • Leendert van der Torre
    • 3
  1. 1.University of TorinoItaly
  2. 2.University of UtrechtThe Netherlands
  3. 3.Computer Science and CommunicationUniversity of LuxembourgLuxembourg

Personalised recommendations