TCP − Compose ⋆  – A TCP-Net Based Algorithm for Efficient Composition of Web Services Using Qualitative Preferences

  • Ganesh Ram Santhanam
  • Samik Basu
  • Vasant Honavar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5364)


In many practical applications, trade-offs involving non-functional attributes e.g., availability, performance play an important role in selecting component services in assembling a feasible composition, i.e., a composite service that achieves the desired functionality. We present TCP − Compose  ⋆ , an algorithm for service composition that identifies, from a set of candidate solutions that achieve the desired functionality, a set of composite services that are non-dominated by any other candidate with respect to the user-specified qualitative preferences over non-functional attributes. We use TCP-net, a graphical modeling paradigm for representing and reasoning with qualitative preferences and importance. We propose a heuristic for estimating the preference ordering over the different choices at each stage in the composition to improve the efficiency of TCP − Compose  ⋆ . We establish the conditions under which TCP − Compose  ⋆  is guaranteed to generate a set of composite services that (a) achieve the desired functionality and (b) constitute a non-dominated set of solutions with respect to the user-specified preferences and tradeoffs over the non-functional attributes.


Service Composition Component Service Composite Service Label Transition System Heuristic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bichler, M., Lin, K.J.: Service-oriented computing. Computer 39(3), 99–101 (2006)CrossRefGoogle Scholar
  2. 2.
    Papazoglou, M.: Service-oriented computing: concepts, characteristics and directions. In: Proceedings of the Fourth International Conference on Web Information Systems Engineering, pp. 3–12. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  3. 3.
    Huhns, M.P., Singh, M.P.: Service-oriented computing: Key concepts and principles. Internet Computing 9(1), 75–81 (2005)CrossRefGoogle Scholar
  4. 4.
    Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web services composition. In: Proceedings of the 12th international conference on World Wide Web, pp. 411–421. ACM, New York (2003)Google Scholar
  5. 5.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middleware for web services composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  6. 6.
    Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with multiple qos constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for qos-aware web service composition. In: Proceedings of the IEEE International Conference on Web Services - ICWS 2006, pp. 72–82 (2006)Google Scholar
  8. 8.
    Pistore, M., Traverso, P., Bertoli, P.: Automated composition of web services by planning in asynchronous domains. In: Fifteenth International Conference on Automated Planning and Scheduling, p. 211 (2005)Google Scholar
  9. 9.
    Traverso, P., Pistore, M.: Automated composition of semantic web services into executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Sirin, E., Parsia, P., Wu, D., Hendler, J., Nau, D.: Htn planning for web service composition using shop2. Journal of Web Semantics 1(4), 377–396 (2004)CrossRefGoogle Scholar
  11. 11.
    Shaparau, D., Pistore, M., Traverso, P.: Contingent planning with goal preferences. In: Proceedings, The Twenty-First National Conference on Artificial Intelligence. AAAI Press, Menlo Park (2006)Google Scholar
  12. 12.
    Pathak, J., Basu, S., Lutz, R., Honavar, V.: Selecting and composing web services through iterative reformulation of functional specifications. In: Proceedings of the 18th International Conference on Tools with Artificial Intelligence, pp. 445–454. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  13. 13.
    Pathak, J., Basu, S., Honavar, V.: On context-specific substitutability of web services. In: Proceedings of the International Conference on Web Services, pp. 192–199. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  14. 14.
    Pathak, J., Basu, S., Honavar, V.: Composing web services through automatic reformulation of service specifications. In: Proceedings of the 5th IEEE International Conference on Services Computing (to appear, 2008)Google Scholar
  15. 15.
    Hamadi, R., Benatallah, B.: A petri net-based model for web service composition. In: Proceedings of the 14th Australasian database conference, pp. 191–200. Australian Computer Society, Inc. (2003)Google Scholar
  16. 16.
    Dustdar, S., Schreiner, W.: A survey on web services composition. International Journal on Web and Grid Services 1(1), 1–20 (2005)CrossRefGoogle Scholar
  17. 17.
    Pathak, J., Basu, S., Honavar, V.: Assembling composite web services from autonomous components. In: Maglogiannis, I., Karpouzis, K., Soldatos, J. (eds.) Emerging Artificial Intelligence Applications in Computer Engineering. IOS Press, Amsterdam (in press, 2008)Google Scholar
  18. 18.
    Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services by planning at the knowledge level. In: Nineteenth International Joint Conference on Artificial Intelligence, pp. 1252–1259 (2005)Google Scholar
  19. 19.
    Brafman, R.I., Domshlak, C., Shimony, S.E.: On graphical modeling of preference and importance. Journal of Artificial Intelligence Research 25, 389–424 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Brafman, R.I., Domshlak, C., Shimony, S.E.: Introducing variable importance tradeoffs into cp-nets. In: Proceedings of Uncertainity in Artificial Intelligence, pp. 69–76 (2002)Google Scholar
  22. 22.
    Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value trade-offs (1993)Google Scholar
  23. 23.
    Schropfer, C., Binshtok, M., Shimony, S.E., Dayan, A., Brafman, R., Offermann, P., Holschke, O.: Introducing preferences over nfps into service selection in soa. In: Non Functional Properties and Service Level Agreements in Service Oriented Computing Workshop (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ganesh Ram Santhanam
    • 1
  • Samik Basu
    • 1
  • Vasant Honavar
    • 1
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA

Personalised recommendations