Advertisement

Bio-imaging Toolkit for Indexing, Searching, Navigation, Discovery and Annotation

  • Afzal Godil
  • Benny Cheung
  • Asim Wagan
  • Xiaolan Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)

Abstract

Bio-imaging toolkit is an application for biological imaging community that will bring in the latest efforts in indexing, searching, navigation, discovery, analysis and annotation for both biological image and video collections. This paper discusses both metadata-based and content-based representation, indexing, querying, navigation, discovery, and retrieval, as well as video segmentation and image/video annotations. It also discusses image retrieval by texture similarity, shape similarity, color similarity, and spatio-temporal relationships for the bio-imaging database. A highly interactive multimedia information retrieval system has been developed which is based on Service Oriented Architecture (SOA) that relies on the REST based web-service model to create efficient web components. Application designed is a light weight container application that can be deployed easily without any expertise and easy to understand for novice users.

Keywords

Service Orient Architecture Zernike Moment Biological Image Video Segmentation Video Review 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Godil, A.: ViSA: Video Segmentation and Annotation. In: UPA 2004 conference, Minneapolis, MN, June 6-11 (2004)Google Scholar
  2. 2.
    Bargeron, D., Gupta, A., Sanocki, E., Grudin, J.: Annotations for streaming video on the web: System Design and Usage Studies. In: Proceeding of WWW8, pp. 61–75 (1999)Google Scholar
  3. 3.
    Swedlow, J.R., Goldberg, I., Brauner, E., Sorger, P.K.: Informatics and Quantitative Analysis in Biological Imaging. Science 300 (April 4, 2003)Google Scholar
  4. 4.
    Sorger, P., Rines, D., Goldberg, I., Swedlow, J., Hughes, B.: The Open Microscopy EnvironmentGoogle Scholar
  5. 5.
    Martone, M.E., Tran, J., Wong, W.W., Sargis, J., Fong, L., Larson, S., Lamont, S.P., Gupta, A., Ellisman, M.H.: Cell Centered Database, The National Center for Microscopy and Imaging Research (NCMIR) at the University of California San DiegoGoogle Scholar
  6. 6.
    Martone, M.E., Tran, J., Wong, W.W., Sargis, J., Fong, L., Larson, S., Lamont, S.P., Gupta, A., Ellisman, M.H.: The Cell Centered Database project: An update on building community resources for managing and sharing 3D imaging data. J. Struct. Biol. (October 16, 2007)Google Scholar
  7. 7.
    Martone, M.E., Sargis, J., Tran, J., Wong, W.W., Jiles, H., Mangir, C.: Database resources for cellular electron microscopy. Methods Cell Biol. 79, 799–822 (2007); PMID: 17327184CrossRefGoogle Scholar
  8. 8.
    Martone, M.E., Gupta, A., Wong, M., Qian, X., Sosinsky, G., Ludaescher, B., Ellisman, M.H.: A cell centered database for electron tomographic data. J. Struct. Biol. 138, 145–155 (2002)CrossRefGoogle Scholar
  9. 9.
    DCMI 1998.  Dublin Core Metadata Element Set, version 1.0: Reference description.  Retrieved January 10 (2007)Google Scholar
  10. 10.
    Hunter, J., Newmarch, J.: An Indexing, Browsing, Search and Retrieval System for Audiovisual Libraries. In: Abiteboul, S., Vercoustre, A.-M. (eds.) ECDL 1999. LNCS, vol. 1696, p. 76. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Hunter, J.: Adding Multimedia to the Semantic Web: Building an MPEG-7 Ontology. In: Proc. Int’l Semantic Web Working Symp. (SWWS 2001), pp. 261–283 (2001)Google Scholar
  12. 12.
    Martinez, J.: Overview of the MPEG-7 Standard, MPEG Document: ISO/IEC JTC1/SC29/WG11 N4509 Pattaya (December 2001)Google Scholar
  13. 13.
    ISO/IEC 15938-5 FDIS Information Technology - Multimedia Content Description Interface - Part 5: Multimedia Description Schemes, MPEG Document: ISO/IEC JTC1/SC29/WG11 Document W4242, Sydney (July 2001)Google Scholar
  14. 14.
    Prata Jr., A., Rusch, W.V.T.: Algorithm for computation of Zernike polynomials expansion coefficients. Appl. Opt. 28(4), 749–754 (1989)CrossRefGoogle Scholar
  15. 15.
    Chiu, P., Girgensohn, A., Polak, W., Rieffel, E., Wilcox, L.: A Genetic Algorithm for Video Segmentation and Summarization. In: Proceedings of IEEE International Conference on Multimedia and Expo, vol. III, pp. 1329–1332 (2000)Google Scholar
  16. 16.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics (1979) Google Scholar
  17. 17.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of large image data. IEEE Transactions on Pattern Analysis and Machine Intelligence (Special Issue on Digital Libraries) 18(8), 837–842 (1996)CrossRefGoogle Scholar
  18. 18.
    Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  19. 19.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (January 19)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Afzal Godil
    • 1
  • Benny Cheung
    • 1
  • Asim Wagan
    • 1
  • Xiaolan Li
    • 1
    • 2
  1. 1.National Institute of Standards and TechnologyUSA
  2. 2.Zhejiang Gongshang UniversityP.R. China

Personalised recommendations