Advertisement

Classification of Multispectral High-Resolution Satellite Imagery Using LIDAR Elevation Data

  • María C. Alonso
  • José A. Malpica
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)

Abstract

This paper studies the influence of airborne LIDAR elevation data on the classification of multispectral SPOT5 imagery over a semi-urban area; to do this, multispectral and LIDAR elevation data are integrated in a single imagery file composed of independent multiple bands. The Support Vector Machine is used to classify the imagery. A scheme of five classes was chosen; ground truth samples were then collected in two sets, one for training the classifier and the other for checking its quality after classification. The results show that the integration of LIDAR elevation data improves the classification of multispectral bands; the assessment and comparison of the classification results have been carried out using complete confusion matrices. Improvements are evident in classes with similar spectral characteristics but for which altitude is a relevant discrimination factor. An overall improvement of 28.3% was obtained, when LIDAR was included.

Keywords

LIDAR Satellite Imagery Classification Support Vector Machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kressler, F.P., Steinnocher, K., Franzen, M.: Object-oriented classification of orthophotos to support update of spatial databases. In: Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium IGARSS 2005, vol. 1, pp. 253–256 (2005)Google Scholar
  2. 2.
    Alonso, M.C., Sanz, A., Malpica, J.A.: Classification of high resolution satellite images using texture. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 499–508. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Syed, S., Dare, P., Jones, S.: Automatic classification of land cover features with high resolution imagery and Lidar data: an objectoriented approach. In: Proceedings of SSC 2005 Spatial Intelligence, Innovation and Praxis: The national biennial Conference of the Spatial Sciences Institute, Melbourne, Australia (2005)Google Scholar
  4. 4.
    Ali, S.S., Dare, P., Jones, S.D.: Fusion of remotely sensed multispectral imagery and Lidar data for forest structure assessment at the tree level. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, vol. XXXVII, Part B7 (2008)Google Scholar
  5. 5.
    Zeng, Y., Zhang, J., Wang, G., Lin, Z.: Urban landuse classification using integrated airborn laser scanning data and high resolution multispectral imagery, Pecora 15/Land Satellite Information IV/ISPRS Commssion I/FIEOS (2002)Google Scholar
  6. 6.
    Rottensteiner, F., Trinder, J., Clode, S., Kubic, K.: Building dectection using LIDAR data and multispectral images. In: Proceedings of DICTA, Sydney, Australia, pp. 673–682 (2003)Google Scholar
  7. 7.
    Hu, X., Tao, C.V., Hu, Y.: Automatic road extraction from dense urban area by integrated processing of high resolution imagery and lidar data. In: Proceedings International Society for Photogrammetry and Remote Sensing (ISPRS), Istanbul, Turkey (2004)Google Scholar
  8. 8.
    Lee, D.S., Shan, J.: Combining Lidar Elevation Data and IKONOS Multispectral Imagery for Coastal Classification Mapping. Marine Geodesy 26(1-2), 117–127 (2003)CrossRefGoogle Scholar
  9. 9.
    Collins, C.A., Parker, R.C., Evans, D.L.: Using multispectral imagery and multi-return LIDAR to estimate trees and stand attributes in a southern bottomland Hardwood forest. In: ASPRS Annual Conference Proceedings on CD-ROM, Denver, Colorado (2004)Google Scholar
  10. 10.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Boser, B.E., Guyon, I., Vapnik, V.N.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, vol. 5, pp. 144–152. ACM Press, San Mateo (1992)Google Scholar
  12. 12.
    Hao, Z.F., Liu, B., Yang, X.W.: A Comparision of Multiclass Support Vector Machine Algorithms. In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, pp. 4221–4226 (2006)Google Scholar
  13. 13.
    Mercier, G., Lennon, M.: Support vector machines for hyperspectral image classification with spectral-based kernels. In: Proceedings of the IEEE Geoscience and Remote Sensing Symposium IGARSS, Toulouse, pp. 21–25 (2003)Google Scholar
  14. 14.
    Azimi-Sadjadi, M.R., Zekavat, S.A.: Cloud classification using support vector machines. In: Proceedings of the IEEE Geoscience and Remote Sensing Symposium IGARSS, Hawaii, vol. 2, pp. 669–671 (2000)Google Scholar
  15. 15.
    Huang, C., Davis, L.S., Townshed, J.R.G.: An assessment of support vector machines for land cover classification. International Journal of Remote Sensing 23, 725–749 (2002)CrossRefGoogle Scholar
  16. 16.
    Foody, G.M., Mathur, A.: A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing 42(6), 1335–1343 (2004)CrossRefGoogle Scholar
  17. 17.
    Melgani, F., Bruzzone, L.: Classification of Hyperspectral Remote Sensing Images With Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing 42(8), 1778–1790 (2004)CrossRefGoogle Scholar
  18. 18.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Elsevier Academic Press, San Diego (2003)zbMATHGoogle Scholar
  19. 19.
    Wald, L.: Data Fusion: Definitions and Architectures Fusion of Images of Different Spatial Resolutions. Paris, France: Les Presses, Ecole des Mines de Paris (2002)Google Scholar
  20. 20.
    Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation, 6th edn. Wiley, NJ (2008)Google Scholar
  21. 21.
    Bork, E.W., Su, J.G.: Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis. Remote Sensing of Environment 111, 11–24 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • María C. Alonso
    • 1
  • José A. Malpica
    • 1
  1. 1.Dpto. de Matemáticas Escuela PolitécnicaUniversidad de Alcalá de HenaresSpain

Personalised recommendations