Detecting Thalamic Abnormalities in Autism Using Cylinder Conformal Mapping

  • Qing He
  • Ye Duan
  • Xiaotian Yin
  • Xianfeng Gu
  • Kevin Karsch
  • Judith Miles
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)


A number of studies have documented that autism has a neurobiological basis, but the anatomical extent of these neurobiological abnormalities is largely unknown. In this paper, we applied advanced computational techniques to extract 3D surface models of the thalamus and subsequently analyze highly localized shape variations in a homogeneous group of autism children. In particular, a new conformal parameterization for high genus surfaces is applied in our shape analysis work, which maps the surfaces onto a cylinder domain. Surface matching among different individual meshes is achieved by re-triangulating each mesh according to the template. Children with autism and their controls are compared, and statistical significant abnormalities in thalamus of autism are detected.


Surface Match Conformal Parameterization Thalamic Volume True Positive Fraction Open Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miles, J.H., Takahashi, T.N., Bagby, S., Sahota, P.K., Vaslow, D.F., Wang, C.H., Hillman, R.E., Farmer, J.E.: Essential versus complex autism: definition of fundamental prognostic subtypes. Am. J. Med. Genet. A(135), 171–180 (2005)CrossRefGoogle Scholar
  2. 2.
    He, Q., Duan, Y., Miles, J.H., Takahashi, T.N.: Statistical Shape Analysis of the Corpus Callosum in Subtypes of Autism. In: IEEE 7th International Symposium on Bioinformatics & Bioengineering, Boston, Massachusetts, USA (2007)Google Scholar
  3. 3.
    Tsatsanis, K., Rourke, B., Klin, A., Volkmar, F., Cicchetti, D., Schultz, R.: Reduced thalamic volume in high-functioning individuals with autism.   Biological Psychiatry 53(2), 121–129 (2003)CrossRefGoogle Scholar
  4. 4.
    Waiter, G.D., Williams, J.H., Murray, A.D., Gilchrist, A., Perrett, D.I., Whiten, A.: A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage 22(2), 619–625 (2004)CrossRefGoogle Scholar
  5. 5.
    Hardan, A., Girgis, R., Adams, J., Gilbert, A., Keshavan, M., Minshew, N.: Abnormal brain size effect on the thalamus in autism.   Psychiatry Research: Neuroimaging 147(2-3), 145–151 (2000)CrossRefGoogle Scholar
  6. 6.
    Hardan, A., Girgis, R., Adams, J., Gilbert, A., Melhem, N.M., Keshavan, M., Minshew, N.: Brief Report: Abnormal Association Between the Thalamus and Brain Size in Asperger’s Disorder. J. Autism. Dev. Disord. (2007)Google Scholar
  7. 7.
    Heckenberg, G., Xi, Y., Duan, Y., Hua, J.: Brain Structure Segmentation from MRI by Geometric Surface Flow. International Journal of Biomedical Imaging, 6 (2006)Google Scholar
  8. 8.
    Gu, X., Wang, Y., Chan, T., Thompson, P.M., Yau, S.: Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping. IEEE Transactions on Medical Imaging 23(8) (2004)Google Scholar
  9. 9.
    Bueno, G., Musse, O., Heitz, F., Armspach, J.P.: Three-dimensional segmentation of anatomical structures in MR images on large data bases. Magnetic Resonance Imaging 19(1), 73–88 (2001)CrossRefGoogle Scholar
  10. 10.
    Chen, T.,, Metaxas, D.: A hybrid framework for 3D medical image segmentation. Medical Image Analysis 9(6), 547–565 (2005)CrossRefGoogle Scholar
  11. 11.
    Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar
  12. 12.
    Belyaev, A.G., Anoshkina, E.V., Yoshizawa, S., Yano, M.: Polygonal curve evolutions for planar shape modeling and analysis. International Journal of Shape Modeling 5(2), 195–217 (1999)CrossRefGoogle Scholar
  13. 13.
    Duan, Y., Hua, J., Qin, H.: Interactive shape modeling using lagrangian surface flow. The Visual Computer 21(5), 279–288 (2005)CrossRefGoogle Scholar
  14. 14.
    Gu, X., Yau, S.: Global conformal surface parameterization. In: Proc. ACM Symp. Geometry Processing, pp. 127–137 (2003)Google Scholar
  15. 15.
    Ross A.: Procrustes analysis, Technical Report, Department of Computer Science and Engineering, University of South Carolina, SC 29208,
  16. 16.
    Styner, M., Oguz, L., Xu, S., Brechbuehler, C., Pantazis, D., Levitt, J.J., Shenton, M.E., Gerig, G.: Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. In: ISC/NA-MIC Workshop on Open Science at MICCAI (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Qing He
    • 1
  • Ye Duan
    • 1
  • Xiaotian Yin
    • 2
  • Xianfeng Gu
    • 2
  • Kevin Karsch
    • 1
  • Judith Miles
    • 3
  1. 1.Department of Computer ScienceUniversity of Missouri-ColumbiaColumbiaUSA
  2. 2.State University of New York at Stony Brook, Stony BrookNew YorkUSA
  3. 3.Thompson Center for AutismUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations