Advertisement

GpuCV: A GPU-Accelerated Framework for Image Processing and Computer Vision

  • Yannick Allusse
  • Patrick Horain
  • Ankit Agarwal
  • Cindula Saipriyadarshan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)

Abstract

This paper presents briefly the state of the art of accelerating image processing with graphics hardware (GPU) and discusses some of its caveats. Then it describes GpuCV, an open source multi-platform library for GPU-accelerated image processing and Computer Vision operators and applications. It is meant for computer vision scientist not familiar with GPU technologies. GpuCV is designed to be compatible with the popular OpenCV library by offering GPU-accelerated operators that can be integrated into native OpenCV applications. The GpuCV framework transparently manages hardware capabilities, data synchronization, activation of low level GLSL and CUDA programs, on-the-fly benchmarking and switching to the most efficient implementation and finally offers a set of image processing operators with GPU acceleration available.

Keywords

GPGPU GLSL NVIDIA CUDA computer vision image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SourceForge.net: Open Computer Vision Library, http://sourceforge.net/projects/opencvlibrary
  2. 2.
    Fernando, R., Kilgard, M.: The Definitive Guide to Programmable Real-Time Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)Google Scholar
  3. 3.
    Rost, R.: OpenGL Shading Language. Addison-Wesley professional, Reading (2004)Google Scholar
  4. 4.
    Peeper, C., Mitchell, J.: Introduction to the DirectX 9 High Level Shading Language. In: ShaderX2 - Introduction and Tutorials with DirectX 9, Wolfgang F. Engel,Wordware Publishing, Inc. (2003)Google Scholar
  5. 5.
    Mac Cool, M., Du Toit, S.: Metaprogramming GPUs with Sh. AK Peters, Inc. (2004)Google Scholar
  6. 6.
    Buck, I., et al.: BrookGPU (2003), http://graphics.stanford.edu/projects/brookgpu/
  7. 7.
    NVIDIA: CUDA (Compute Unified Device Architecture) (2006), http://www.nvidia.com/object/cuda_home.html
  8. 8.
  9. 9.
    Hopf, M., Ertl, T.: Hardware-Based Wavelet Transformations. In: Workshop of Vision, Modelling, and Visualization (VMV 1999), pp. 317–328 (1999)Google Scholar
  10. 10.
    Yaromenok, A.: DIPlib - Digital Image Processing Library (2003), http://sourceforge.net/projects/diplib
  11. 11.
    Colantoni, P., Boukala, N., Da Rugna, J.: Fast and accurate color image processing using 3d graphics cards. In: 8th International FallWorkshop: Vision Modeling and Visualization, Munich, Germany (2003)Google Scholar
  12. 12.
    Jargstorff, F.: A framework for image processing. In: GPU Gems, vol. 1, pp. 445–467. Addison Wesley professional, Reading (2004)Google Scholar
  13. 13.
    Nocent, O.: Image processing with OpenGL (2004), http://leri.univ-reims.fr/nocent/gpu.html
  14. 14.
    Fung, J., et al.: OpenVIDIA: Parallel GPU Computer Vision (2004 and later on), http://openvidia.sourceforge.net
  15. 15.
    Moreland, K., Angel, E.: The FFT on a GPU. In: SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 112–119 (2003)Google Scholar
  16. 16.
    Strzodka, R., Telea, A.: Generalized Distance Transforms and skeletons in graphics hardware. In: Proceedings of EG/IEEE TCVG Symposium on Visualization (VisSym 2004), pp. 221–230 (2004)Google Scholar
  17. 17.
    Strzodka, R., Garbe, C.: Real-time motion estimation and visualization on graphics cards. In: Proc. IEEE Visualization, pp. 545–552 (2004)Google Scholar
  18. 18.
    Fernando, R.: GPU Gems: Programming techniques, Tips and Tricks for Real-Time Graphics. Addison Wesley professional, Reading (2004)Google Scholar
  19. 19.
    Hubert Nguyen, N.C. (ed.): Programming Techniques for High-Performance Graphics and General-Purpose. Addison Wesley professional, Reading (2007)Google Scholar
  20. 20.
    GPU4Vision (2008), http://www.gpu4vision.org
  21. 21.
    Harris, M.: SC07 - High Performance Computing with CUDA - Optimizing CUDA (2007), http://www.gpgpu.org/sc2007/SC07_CUDA_5_Optimization_Harris.pdf
  22. 22.
    Allusse, Y.: SugoiTracer library: tools for embedded application benchmarking (2006), http://sourceforge.net/projects/sugoitools/
  23. 23.
    Deriche, R.: Fast algorithms for low-level vision. In: 9th International Conference on Pattern Recognition, 2007. NSS 2007, vol. 4, pp. 434–438. IEEE, Rome (1988)Google Scholar
  24. 24.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2001, vol. 1, pp. 511–518 (2001)Google Scholar
  25. 25.
    NVIDIA: CUDPP(CUDA Data Parallel Primitives Library) (2006), http://www.gpgpu.org/developer/cudpp/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yannick Allusse
    • 1
  • Patrick Horain
    • 1
  • Ankit Agarwal
    • 1
  • Cindula Saipriyadarshan
    • 1
  1. 1.Institut TELECOM; TELECOM & Management SudParisEvry CedexFrance

Personalised recommendations