Numismatic Object Identification Using Fusion of Shape and Local Descriptors

  • R. Huber-Mörk
  • M. Zaharieva
  • H. Czedik-Eysenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)

Abstract

Reliable object identification is an essential task in the process of recognition and traceability of stolen cultural heritage. Existing approaches for object recognition focus mainly on object classification. However, they are not sufficient to identify a given object among hundreds of objects of the same class. In this paper, we investigate the feasibility of computer aided identification of ancient coins. Since the shape of a coin is a very unique feature, we first apply a shape descriptor to capture its characteristics. In the next step, local features are used to describe the die information. We present experiments on a data set of 2400 images of ancient coins. The evaluation results show that our approach is competitive. Moreover, it indicates some outstanding features that show great promise for reliable object identification in the area of cultural heritage.

References

  1. 1.
    Fukumi, M., Omatu, S., Takeda, F., Kosaka, T.: Rotation-invariant neural pat. rec. system with application to coin recognition. IEEE Trans. on Neur. Netw. 3, 272–279 (1992)CrossRefGoogle Scholar
  2. 2.
    Nölle, M., Penz, H., Rubik, M., Mayer, K.J., Holländer, I., Granec, R.: Dagobert – a new coin recognition and sorting system. In: Proc. of Intl. Conf. on Digital Image Computing – Techniques and Applications, pp. 329–338 (2003)Google Scholar
  3. 3.
    Van Der Maaten, L., Poo, P.: COIN-O-MATIC: A fast system for reliable coin classification. In: Proc. of the Muscle CIS Coin Competition Workshop, Berlin, Germany, pp. 7–18 (2006)Google Scholar
  4. 4.
    Reisert, M., Ronneberger, O., Burkhardt, H.: An efficient gradient based registration technique for coin recognition. In: Proc. of Muscle CIS Coin Competition Workshop, Berlin, Germany, pp. 19–31 (2006)Google Scholar
  5. 5.
    Huber, R., Ramoser, H., Mayer, K., Penz, H., Rubik, M.: Classification of coins using an eigenspace approach. Pat. Rec. Let. 26, 61–75 (2005)CrossRefGoogle Scholar
  6. 6.
    Vassilas, N., Skourlas, C.: Content-based coin retrieval using invariant features and self-organizing maps. In: Intl. Conf. on Artif. Neur. Netw., pp. 113–122 (2006)Google Scholar
  7. 7.
    Van Der Maaten, L., Postma, E.: Towards automatic coin classification. In: Proc. of Conf. on Electronic Imaging and the Visual Arts, Vienna, Austria, pp. 19–26 (2006)Google Scholar
  8. 8.
    Zaharieva, M., Huber-Mörk, R., Nölle, M., Kampel, M.: On ancient coin classification. In: Intl. Symp. on Virtual Reality, Archaeology and Cultural Heritage, pp. 55–62 (2007)Google Scholar
  9. 9.
    Veltkamp, R.C.: Shape matching: Similarity measures and algorithms. Technical Report UU-CS (Ext. rep. 2001-03), Utrecht University: Information and Computing Sciences, Utrecht, The Netherlands (2001)Google Scholar
  10. 10.
    Jeannin, S., Bober, M.: Description of core experiments for mpeg-7 motion/shape. Technical Report ISO/IEC JTC 1/SC 29/WG 11 MPEG99/N2690 (1999)Google Scholar
  11. 11.
    Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proc. Conf. on Comp. Vis. and Pat. Rec., pp. 424–429 (2000)Google Scholar
  12. 12.
    McNeill, G., Vijayakumar, S.: 2D shape classification and retrieval. In: Proc. of Intl. Joint Conf. on Artif. Intell., pp. 1483–148 (2005)Google Scholar
  13. 13.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. on Pat. Anal. and Mach. Intell. 24, 509–522 (2002)CrossRefGoogle Scholar
  14. 14.
    Ling, H., Okada, K.: An efficient earth mover´s distance algorithm for robust histogram comparison. IEEE Trans. on Pat. Anal. and Mach. Intell. 29, 840–853 (2007)CrossRefGoogle Scholar
  15. 15.
    Felzenszwalb, P., Schwartz, J.: Hierarchical matching of deformable shapes. In: Proc. of Comp. Vis. and Pat. Rec., pp. 1–8 (2007)Google Scholar
  16. 16.
    Ferrari, V., Tuytelaars, T., Gool, L.V.: Simultaneous object recognition and segmentation from single or multiple model views. Intl. J. of Comp. Vis. 67, 159–188 (2006)CrossRefGoogle Scholar
  17. 17.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. on Pat. Anal. and Mach. Intell. 27, 1265–1799 (2005)CrossRefGoogle Scholar
  18. 18.
    Murillo, A.C., Guerrero, J.J., Sagüés, C.: Surf features for efficient robot localization with omnidirectional images. In: IEEE Intl. Conf. on Robotics and Automation, pp. 3901–3907 (2007)Google Scholar
  19. 19.
    Loy, G., Eklundh, J.O.: Detecting symmetry and symmetric constellations of features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Tuytelaars, T., Gool, L.V.: Matching widely separated views based on affine invariant regions. Intl. J. of Comp. Vis. 59, 61–85 (2004)CrossRefGoogle Scholar
  21. 21.
    Mikolajczyk, K., Leibe, B., Schiele, B.: Local features for object class recognition. In: IEEE Intl. Conf. on Comp. Vis., vol. 2, pp. 1792–1799 (2005)Google Scholar
  22. 22.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on Pat. Anal. and Mach. Intel. 27, 1615–1630 (2005)CrossRefGoogle Scholar
  23. 23.
    Pavlou, M., Allinson, N.M.: Automatic extraction and classification of footwear patterns. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 721–728. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. of the Britisch Machine Vision Conf., London, vol. 1, pp. 384–393 (2002)Google Scholar
  25. 25.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Intl. J. of Comp. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  26. 26.
    Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Yanowitz, S., Bruckstein, A.: A new method for image segmentation. Comp. Vis., Graphics and Image Proc. 46, 82–95 (1989)CrossRefGoogle Scholar
  28. 28.
    Ruisz, J., Biber, J., Loipetsberger, M.: Quality evaluation in resistance spot welding by analysing the weld fingerprint on metal bands by computer vision. Intl. J. of Adv. Manuf. Tech. 33, 952–960 (2007)CrossRefGoogle Scholar
  29. 29.
    Zambanini, S., Kampel, M.: Segmentation of ancient coins based on local entropy and gray value range. In: Proc. of Comp. Vis. Winter Workshop, pp. 9–16 (2008)Google Scholar
  30. 30.
    Sivic, J., Schaffalitzky, F., Zisserman, A.: Object level grouping for video shots. Intl. J. of Comp. Vis. 67, 189–210 (2006)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • R. Huber-Mörk
    • 1
  • M. Zaharieva
    • 2
  • H. Czedik-Eysenberg
    • 1
  1. 1.Austrian Research Centers GmbH - ARC, smart systems DivisionBusiness unit High Performance Image ProcessingSeibersdorfAustria
  2. 2.Institute for Computer Aided Automation, Pattern Recognition & Image Processing GroupVienna Univ. of TechnologyViennaAustria

Personalised recommendations