Modeling and Visualization Approaches for Time-Varying Volumetric Data

  • Kenneth Weiss
  • Leila De Floriani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)


Time-varying volumetric data arise in a variety of application domains, and thus several techniques for dealing with such data have been proposed in the literature. A time-varying dataset is typically modeled either as a collection of discrete snapshots of volumetric data, or as a four-dimensional dataset. This choice influences the operations that can be efficiently performed on such data. Here, we classify the various approaches to modeling time-varying scalar fields, and briefly describe them. Since most models of time-varying data have been abstracted from well-known approaches to volumetric data, we review models of volumetric data as well as schemes to accelerate isosurface extraction and discuss how these approaches have been applied to time-varying datasets. Finally, we discuss multi-resolution approaches which allow interactive processing and visualization of large time varying datasets.


Temporal Coherence Volumetric Data Tetrahedral Mesh Simplicial Mesh Interval Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Floriani, L., Magillo, P.: Multiresolution mesh representation: models and data structures. In: Floater, M., Iske, A., Quak, E. (eds.) Principles of Multi-resolution Geometric Modeling. Lecture Notes in Mathematics, pp. 364–418. Springer, Berlin (2002)Google Scholar
  2. 2.
    De Floriani, L., Danovaro, E.: Generating, representing and querying level-of-detail tetrahedral meshes. In: Bonneau, P., Nielson, G.M., Ertl, T. (eds.) Scientific Visualization: Extracting Information and Knowledge from Scientific Data Sets. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Lorensen, W., Cline, H.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp. 163–169 (1987)Google Scholar
  4. 4.
    Fujishiro, I., Maeda, Y., Sato, H., Takeshima, Y.: Volumetric data exploration using interval volume. Trans. Visualization and Computer Graphics (1996)Google Scholar
  5. 5.
    Treece, G.M., Prager, R.W., Gee, A.H.: Regularised marching tetrahedra: improved iso-surface extraction. Computers and Graphics 23, 583–598 (1999)CrossRefGoogle Scholar
  6. 6.
    Nielson, G.M., Sung, J.: Interval volume tetrahedralization. In: Proceedings IEEE Visualization 1997, pp. 221–228 (1997)Google Scholar
  7. 7.
    Roberts, J.C., Hill, S.: Piecewise-linear hypersurfaces using the marching cube algorithm. In: Erbacher, R., Pang, A. (eds.) Proceedings of SPIE Visualization 2000 of Visual Data Exploration and Analysis VI, SPIE, pp. 170–181 (1999)Google Scholar
  8. 8.
    Bhaniramka, P., Wenger, R., Crawfis, R.: Isosurface construction in any dimension using convex hulls. Trans. Visualization and Computer Graphics 10, 130–141 (2004)CrossRefGoogle Scholar
  9. 9.
    Weigle, C., Banks, D.: Extracting iso-valued features in 4-dimensional scalar fields. In: Proceedings IEEE Visualization 1998, pp. 103–110. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  10. 10.
    Bhaniramka, P., Zhang, C., Xue, D., Crawfis, R., Wenger, R.: Volume interval segmentation and rendering. In: Proc. Volume Visualization Symposium (2004)Google Scholar
  11. 11.
    Zhang, C., Xue, D., Crawfis, R., Wenger, R.: Time-varying interval volumes. In: Workshop on Volume Graphics, pp. 99–232 (2005)Google Scholar
  12. 12.
    Ji, G., Shen, H.W., Wenger, R.: Volume tracking using higher dimensional isosurfacing. In: Turk, G., van Wijk, J., Moorhead, R. (eds.) Proceedings IEEE Visualization 2003, pp. 209–216. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  13. 13.
    Wilhelms, J., Gelder, A.V.: Octrees for faster isosurface generation. ACM Trans. Graph. 11, 201–227 (1992)CrossRefzbMATHGoogle Scholar
  14. 14.
    Livnat, Y., Shen, H., Johnson, C.: A Near Optimal Isosurface Extraction Algorithm Using the Span Space. Trans. Visualization and Computer Graphics 2, 73–84 (1996)CrossRefGoogle Scholar
  15. 15.
    Shen, H., Hansen, C., Livnat, Y., Johnson, C.: Isosurfacing in span space with utmost efficiency (ISSUE). In: Proceedings IEEE Visualization (1996)Google Scholar
  16. 16.
    Cignoni, P., Marino, P., Montani, C., Puppo, E., Scopigno, R.: Speeding up isosurface extraction using interval trees. IEEE Transactions on Visualization and Computer Graphics 3, 158–170 (1997)CrossRefGoogle Scholar
  17. 17.
    Edelsbrunner, H.: Dynamic Data Structures for Orthogonal Intersection Queries. Technical report, Institut für Informationsverarbeitung, Tech. Univ. Graz (1980)Google Scholar
  18. 18.
    Van Kreveld, M.: Efficient methods for isoline extraction from a TIN. Geographical Information Systems 10, 523–540 (1996)CrossRefGoogle Scholar
  19. 19.
    Sutton, P., Hansen, C.: Isosurface extraction in time-varying fields using a temporal branch-on-need tree (T-BON). In: Proceedings IEEE Visualization, pp. 147–153 (1999)Google Scholar
  20. 20.
    Shi, Q., JaJa, J.: Isosurface extraction and spatial filtering using persistent octree. IEEE Trans. Visualization and Computer Graphics 12, 1283–1290 (2006)CrossRefGoogle Scholar
  21. 21.
    Shen, H.: Isosurface extraction in time-varying fields using a temporal hierarchical index tree. In: IEEE Visualization 1998, pp. 159–166 (1998)Google Scholar
  22. 22.
    Chiang, Y.: Out-of-core isosurface extraction of time-varying fields over irregular grids. In: Proceedings IEEE Visualization, pp. 217–224 (2003)Google Scholar
  23. 23.
    Vrolijk, B., Post, F.: Interactive out-of-core isosurface visualization in time-varying data sets. Computers & Graphics 30, 265–276 (2006)CrossRefGoogle Scholar
  24. 24.
    Waters, K.W., Co, C.S., Joy, K.I.: Using difference intervals for time-varying isosurface visualization. IEEE Trans. Visualization and Computer Graphics 12, 1275–1282 (2006)CrossRefGoogle Scholar
  25. 25.
    Duchaineau, M., Wolinsky, M., Sigeti, D.E., Miller, M.C., Aldrich, C., Mineev-Weinstein, M.B.: ROAMing terrain: real-time optimally adapting meshes. In: Yagel, R., Hagen, H. (eds.) Proceedings IEEE Visualization 1997, Phoenix, AZ, pp. 81–88. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  26. 26.
    Lindstrom, P., Pascucci, V.: Terrain simplification simplified: a general framework for view-dependent out-of-core visualization. IEEE Transactions on Visualization and Computer Graphics 8, 239–254 (2002)CrossRefGoogle Scholar
  27. 27.
    Gregorski, B., Duchaineau, M., Lindstrom, P., Pascucci, V., Joy, K.: Interactive view-dependent rendering of large isosurfaces. In: Proc. IEEE Visualization, San Diego, CA. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  28. 28.
    Lee, M., De Floriani, L., Samet, H.: Constant-time neighbor finding in hierarchical tetrahedral meshes. In: Proceedings International Conference on Shape Modeling, Genova, Italy, pp. 286–295. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar
  29. 29.
    Shen, H., Chiang, L., Ma, K.: A fast volume rendering algorithm for time-varying fields using a TSP tree. In: Proc. IEEE Visualization, pp. 371–377 (1999)Google Scholar
  30. 30.
    Gregorski, B., Senecal, J., Duchaineau, M., Joy, K.: Adaptive extraction of time-varying isosurfaces. IEEE Trans. Visualization and Computer Graphics (2004)Google Scholar
  31. 31.
    Lee, M., De Floriani, L., Samet, H.: Constant-time navigation in four-dimensional nested simplicial meshes. In: Proceedings Shape Modeling International 2004, pp. 221–230. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  32. 32.
    Ponchio, F., Hormann, K.: Interactive rendering of dynamic geometry. IEEE Transactions on Visualization and Computer Graphics 14, 914–925 (2008)CrossRefGoogle Scholar
  33. 33.
    Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.: Batched multi triangulation. In: Proceeding IEEE Visualization, p. 27 (2005)Google Scholar
  34. 34.
    Westermann, R.: A multiresolution framework for volume rendering. In: Symposium on Volume visualization, pp. 51–58. ACM Press, New York (1994)Google Scholar
  35. 35.
    Linsen, L., Pascucci, V., Duchaineau, M., Hamann, B., Joy, K.: Wavelet-based multiresolution with n-th-root-of-2 Subdivision. In: Conference: Presented at: Dagstuhl Seminar on Geometric Modeling, Dagstuhl, DE, 05/01/2002–05/06/2002 (2004)Google Scholar
  36. 36.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: SIGGRAPH, pp. 173–182. ACM Press, New York (1995)Google Scholar
  37. 37.
    Pascucci, V.: Slow-Growing Subdivisions (SGSs) in any dimension: towards removing the curse of dimensionality. Computer Graphics Forum 21 (2002)Google Scholar
  38. 38.
    Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3, 186–200 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, C., Gao, J., Li, L., Shen, H.: A Multiresolution Volume Rendering Framework for Large-Scale Time-Varying Data Visualization. In: Fourth International Workshop on Graphics 2005, pp. 11–223 (2005)Google Scholar
  40. 40.
    Bertram, M., Laney, D., Duchaineau, M., Hansen, C., Hamann, B., Joy, K.: Wavelet representation of contour sets. In: Proceedings IEEE Visualization, pp. 303–566 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kenneth Weiss
    • 1
  • Leila De Floriani
    • 2
  1. 1.Department of Computer ScienceUniversity of Maryland
  2. 2.Department of Computer ScienceUniversity of GenovaGenovaItaly

Personalised recommendations