A Killer Application for Pairings: Authenticated Key Establishment in Underwater Wireless Sensor Networks

  • David Galindo
  • Rodrigo Roman
  • Javier Lopez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5339)


Wireless sensors are low power devices which are highly constrained in terms of computational capabilities, memory, and communication bandwidth. While battery life is their main limitation, they require considerable energy to communicate data. The latter is specially dramatic in underwater wireless sensor networks (UWSN), where the acoustic transmission mechanisms are less reliable and more energy-demanding. Saving in communication is thus the primary concern in underwater wireless sensors. With this constraint in mind, we argue that non-interactive identity-based key agreement built on pairings provides the best solution for key distribution in large UWSN when compared to the state of the art. At first glance this claim is surprising, since pairing computation is very demanding. Still, pairing-based non-interactive key establishment requires minimal communication and at the same time enjoys excellent properties when used for key distribution.


identity-based key agreement underwater wireless sensor networks key distribution pairings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [APM05]
    Akyildiz, I., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks Jounal (Elsevier) 3(3), 257–279 (2005)CrossRefGoogle Scholar
  2. [AR06]
    Alcaraz, C., Roman, R.: Applying key infrastructures for sensor networks in cip/ciip scenarios. In: López, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 166–178. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. [BF03]
    Boneh, D., Franklin, M.: Identity-Based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. [BSS05]
    Blake, I.F., Seroussi, G., Smart, N.: Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series, vol. 317. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  5. [Cor07]
    Atmel Corporation. Atmega128 product description (2007), http://www.atmel.com/dyn/products/product_card.asp?part_id=2018
  6. [CS06]
    Jun Choi, K., Song, J.-I.: Investigation of feasible cryptographic algorithms for wireless sensor network. In: Proceedings of the 8th International Conference on Advanced Communication Technology, ICACT 2006 (2006)Google Scholar
  7. [Cui07]
    Cui, J.-H.: Underwatersensor network lab — overview, achievements, plans (2007), http://uwsn.engr.uconn.edu
  8. [CY05]
    Camtepe, S.A., Yener, B.: Key distribution mechanisms for wireless sensor networks: a survey. Technical Report TR-05-07, College of William & Mary (March 2005)Google Scholar
  9. [DDH+05]
    Du, W., Deng, J., Han, Y.S., Varshney, P., Katz, J., Khalili, A.: A pairwise key pre-distribution scheme for wireless sensor networks. ACM Transactions on Information and System Security 8(2), 228–258 (2005)CrossRefGoogle Scholar
  10. [DE06]
    Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on pairings. Discrete Applied Mathematics 154(2), 270–276 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. [GST07]
    Großschädl, J., Szekely, A., Tillich, S.: The energy cost of cryptographic key establishment in wireless sensor networks. In: ASIACCS, pp. 380–382. ACM, New York (2007)CrossRefGoogle Scholar
  12. [Hic08]
    Hickey, H.: Underwater communication: Robofish are the ultimate in ocean robots, keeping in touch without scientists’ help (June 2008)Google Scholar
  13. [Inc07]
    LinkQuest Inc. Underwater acoustic modems (2007), http://www.link-quest.com/
  14. [Inc08]
    Crossbow Technology Inc. Wireless sensor nodes (2008), http://www.xbow.com/
  15. [KN93]
    Kohl, J.T., Neuman, B.C.: The Kerberos network authentication service (V5) (1993)Google Scholar
  16. [LHKV04]
    Charles Lai, B., Hwang, D.D., Pete Kim, S., Verbauwhede, I.: Reducing radio energy consumption of key management protocols for wireless sensor networks. In: Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED 2004), pp. 351–356 (2004)Google Scholar
  17. [LMQ+03]
    Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.A.: An efficient protocol for authenticated key agreement. Des. Codes Cryptography 28(2), 119–134 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. [LNL05]
    Liu, D., Ning, P., Li, R.: Establishing pairwise keys in distributed sensor networks. ACM Transactions on Information and System Security 8(1), 41–77 (2005)CrossRefGoogle Scholar
  19. [LZC08]
    Liu, L., Zhou, S., Cui, J.-H.: Prospects and problems of wireless communications for underwater sensor networks. Wireless Communications and Mobile Computing - Special Issue on Underwater Sensor Networks (to appear, 2008)Google Scholar
  20. [MHH05]
    Mehta, M., Huang, D., Harn, L.: Rink-rkp: A scheme for key predistribution and shared-key discovery in sensor networks. In: Proceedings of the 24th IEEE International Performance Computing and Communications Conference (IPCCC 2005), pp. 193–197 (2005)Google Scholar
  21. [MQV95]
    Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing mutual implicit authentication. In: SecondWorkshop on Selected Areas in Cryptography (SAC 1995) (1995)Google Scholar
  22. [OSLD08]
    Oliveira, L.B., Scott, M., Lopez, J., Dahab, R.: Tinypbc: Pairings for authenticated identity-based non-interactive key distribution in sensor networks. In: 5th International Conference on Networked Sensing Systems (to appear, 2008), http://eprint.iacr.org/2007/482
  23. [Sha85]
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  24. [SOK01]
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic curve (in japanese). In: The 2001 Symposium on Cryptography and Information Security, Oiso, Japan (2001)Google Scholar
  25. [SOS+08]
    Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: Nanoecc: Testing the limits of elliptic curve cryptography in sensor networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. [Ver04]
    Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. J. Cryptology 17(4), 277–296 (2004)MathSciNetCrossRefMATHGoogle Scholar
  27. [X905]
    Accredited Standards Committee X9. American national standard x9.62-2005, public key cryptography for the financial services industry, the elliptic curve digital signature algorithm (ecdsa) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Galindo
    • 1
  • Rodrigo Roman
    • 2
  • Javier Lopez
    • 2
  1. 1.University of LuxembourgLuxembourg
  2. 2.Department of Computer ScienceUniversity of MalagaSpain

Personalised recommendations