An Efficient On-Line/Off-Line Signature Scheme without Random Oracles

  • Marc Joye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5339)

Abstract

On-line/off-line signature schemes allow one to quickly compute a digital signature from a pre-computed coupon. One of the most efficient schemes to date is the GPS scheme, due to Girault, Poupard and Stern. Its security stands in the random oracle model. This paper presents a novel on-line/off-line signature featuring the same on-line efficiency (only a single small integer multiplication has to be computed) but without relying on random oracles.

Keywords

Cryptography digital signature on-line/off-line signing  standard model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)Google Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2004); An extended abstract appears in Eurocrypt 2004MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: 30th Annual ACM Symposium on Theory of Computing (STOC 1998), pp. 209–217. ACM Press, New York (1998)Google Scholar
  6. 6.
    Canetti, R., Goldreich, O., Halevi, S.: On the random oracle methodology as applied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 40–57. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/on-line signatures; theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Shoup, V.: Signature scheme based on the strong RSA assumption. ACM Transactions on Information and System Security 3(3), 161–185 (2000)CrossRefGoogle Scholar
  10. 10.
    Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. Journal of Cryptology 9(1), 35–67 (1996); A preliminary version appears in Crypto 1989MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  12. 12.
    Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Fujisaki, E., Okamoto, T.: Statistical zero-knowledge protocols to prove modular polynomial equations. In: Kaliski Jr., B. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Girault, M.: Self-certified signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  16. 16.
    Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature schemes based on groups of unknown order. Journal of Cryptology 19(4), 463–487 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen message attacks. SIAM Journal of Computing 17(2), 281–308 (1988)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Groth, J.: Cryptography in subgroups of \(\mathbb{Z}_n^*\). In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 50–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    ISO/IEC 14888-2. Information technology – Security techniques – Digital signatures with appendix – Part 2: Integer factorisation based mechanisms, 2nd edn., April 15 (2008)Google Scholar
  21. 21.
    Kurosawa, K., Schmidt-Samoa, K.: New online/offline signature schemes without random oracles. In: Yung, M., et al. (eds.) PKC 2006. LNCS, vol. 3958, pp. 330–346. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be improved? Complexity trade-offs with the digital signature standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Poupard, G., Stern, J.: Security analysis of a practical “on the fly” authentication and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 422–436. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 93–110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    van Oorschot, P.C., Wiener, M.: On Diffie-Hellman key agreement with short exponents. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  27. 27.
    Xu, S., Mu, Y., Susilo, W.: Online/offline signatures and multisignatures for AODV and DSR routing security. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 99–110. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Yu, P., Tate, S.R.: Online/offline signature schemes for devices with limited computing capabilities. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 301–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Zhu, H.: New digital signature scheme attaining immunity against adaptive chosen message attack. Chinese Journal of Electronics 10(4), 484–486 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marc Joye
    • 1
  1. 1.Thomson R&D France Technology Group, Corporate ResearchSecurity LaboratoryCesson-Sévigné CedexFrance

Personalised recommendations