Local Non-planarity of Three Dimensional Surfaces for an Invertible Reconstruction: k-Cuspal Cells

  • Marc Rodríguez
  • Gaëlle Largeteau-Skapin
  • Éric Andres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5358)


This paper addresses the problem of the maximal recognition of hyperplanes for an invertible reconstruction of 3D discrete objects. k-cuspal cells are introduced as a three dimensional extension of discrete cusps defined by R.Breton. With k-cuspal cells local non planarity on discrete surfaces can be identified in a very straightforward way.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABL01]
    Andres, E., Breton, R., Lienhardt, P.: spaMod: design of a spatial modeler. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 90–107. Springer, Heidelberg (2002)Google Scholar
  2. [And94]
    Andres, E.: Discrete circles, rings and spheres. Computer & Graphics 18(5), 695–706 (1994)CrossRefGoogle Scholar
  3. [And03]
    Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65, 92–111 (2003)MATHCrossRefGoogle Scholar
  4. [BSDA03]
    Breton, R., Sivignon, I., Dupont, F., Andres, E.: Towards an invertible Euclidean reconstruction of a discrete object. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 246–256. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [DA08]
    Dexet, M., Andres, E.: A generalized preimage for the digital analytical hyperplane recognition. Discrete Applied Mathematics (accepted, 2008)Google Scholar
  6. [Fra95]
    Françon, J.: Topologie de Khalimsky-Kovaleski et Algorithmique Graphique. In: 1st International Workshop on Discrete Geometry for Computer Imagery, Clermont-Ferrand, France, pp. 209–217 (1995)Google Scholar
  7. [Free70]
    Freeman, H.: Boundary encoding and processing. In: Lipkin, B.S., Rosenfeld, A. (eds.) Pictures Processing and Psychopictories, pp. 241–266. Academic, New York (1970)Google Scholar
  8. [Kov93]
    Kovalevsky, V.: Digital geometry based on the topology of abstract cells complexes. In: Discrete Geometry for Computer Imagery 1993, pp. 259–284 University Louis-Pasteur, Strasbourg, France (1993)Google Scholar
  9. [JA95]
    Jacob, M.-A., Andres, E.: On Discrete Rotations. In: 5th Int. Workshop on Discrete Geometry for Computer Imagery, Clermont-Ferrand, France, pp. 161–174 (September 1995)Google Scholar
  10. [Rev91]
    Reveillès, J.-P.: Géométrie Discrète, calcul en nombres entiers et algorithmique. Thèse d’état, University Louis Pasteur, France (1991)Google Scholar
  11. [SDC06]
    Sivignon, I., Dupont, F., Chassery, J.-M.: Reversible vectorisation of 3D digital planar curves and applications. Image Vision and Computing, 1644–1656 (2006)Google Scholar
  12. [V96]
    Vialard, A.: Geometrical parameters extraction from discrete path. In: Discrete Geometry for Computer Imagery 1996, pp. 24–35 (1996)Google Scholar
  13. [VC99]
    Vittone, J., Chassery, J.-M.: (n,m)-cubes and Farey nets for naive planes understanding. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. [VC00]
    Vittone, J., Chassery, J.-M.: Recognition of digital Naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marc Rodríguez
    • 1
  • Gaëlle Largeteau-Skapin
    • 1
  • Éric Andres
    • 1
  1. 1.Laboratory XLIM, SIC DepartmentUniversity of PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations