Brain Lesion Segmentation through Physical Model Estimation

  • Marcel Prastawa
  • Guido Gerig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5358)


Segmentations of brain lesions from Magnetic Resonance (MR) images is crucial for quantitative analysis of lesion populations in neuroimaging of neurological disorders. We propose a new method for segmenting lesions in brain MRI by inferring the underlying physical models for pathology. We use the reaction-diffusion model as our physical model, where the diffusion process is guided by real diffusion tensor fields that are obtained from Diffusion Tensor Imaging (DTI). The method performs segmentation by solving the inverse problem, where it determines the optimal parameters for the physical model that generates the observed image. We show that the proposed method can infer reasonable models for multiple sclerosis (MS) lesions and healthy MRI data. The method has potential for further extensions with different physical models or even non-physical models based on existing segmentation schemes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakshi, R., Caruthersa, S.D., Janardhana, V., Wasay, M.: Intraventricular csf pulsation artifact on fast fluid-attenuated inversion-recovery MR images: Analysis of 100 consecutive normal studies. AJNR 21, 503–508 (2000)Google Scholar
  2. 2.
    Zijdenbos, A., Forghani, R., Evans, A.: Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 439–448. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Thirion, J.P., Calmon, G.: Deformation analysis to detect and quantify active lesions in three-dimensional medical image sequences. IEEE TMI 18, 429–441 (1999)Google Scholar
  4. 4.
    Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis. Medical Image Analysis 6, 163–179 (2002)CrossRefGoogle Scholar
  5. 5.
    van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE TMI 20, 677–688 (2001)Google Scholar
  6. 6.
    Mohamed, A., Zacharaki, E.I., Shen, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. MedI.A 10 (2006)Google Scholar
  7. 7.
    Clatz, O., Sermesant, M., Bondiau, P.Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3d growth of brain tumors in mr images including diffusion and mass effect. IEEE Transactions on Medical Imaging 24, 1344–1346 (2005)Google Scholar
  8. 8.
    Cocosco, C.A., Kollokian, V., Kwan, R.S., Evans, A.C.: BrainWeb: Online interface to a 3D MRI simulated brain database. Neuroimage 5 (1997)Google Scholar
  9. 9.
    Goodlett, C., Davis, B., Jean, R., Gilmore, J., Gerig, G.: Improved correspondence for dti population studies via unbiased atlas building. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 260–267. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16, 187–198 (1997)CrossRefGoogle Scholar
  11. 11.
    Hughes, T.J.R.: The finite element method: linear static and dynamic finite element analysis. Dover (2000)Google Scholar
  12. 12.
    Lee, H.C., Cok, D.R.: Detecting boundaries in a vector field. IEEE Trans. Signal Processing 39, 1181–1194 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marcel Prastawa
    • 1
  • Guido Gerig
    • 1
  1. 1.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations