Learning Pairwise Dissimilarity Profiles for Appearance Recognition in Visual Surveillance

  • Zhe Lin
  • Larry S. Davis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5358)


Training discriminative classifiers for a large number of classes is a challenging problem due to increased ambiguities between classes. In order to better handle the ambiguities and to improve the scalability of classifiers to larger number of categories, we learn pairwise dissimilarity profiles (functions of spatial location) between categories and adapt them into nearest neighbor classification. We introduce a dissimilarity distance measure and linearly or nonlinearly combine it with direct distances. We illustrate and demonstrate the approach mainly in the context of appearance-based person recognition.


Recognition Rate Near Neighbor Visual Surveillance Person Recognition Pairwise Dissimilarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakajima, C., Pontil, M., Heisele, B., Poggio, T.: Full-body person recognition system. Pattern Recognition 36, 1997–2006 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: NIPS (1997)Google Scholar
  3. 3.
    Roth, V., Tsuda, K.: Pairwise coupling for machine recognition of handprinted japanese characters. In: CVPR (2001)Google Scholar
  4. 4.
    Wu, T., Lin, C., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5, 975–1005 (2004)MathSciNetGoogle Scholar
  5. 5.
    Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 263–286 (1995)Google Scholar
  6. 6.
    Amit, Y., Geman, D., Wilder, K.: Joint induction of shape features and tree classifiers. IEEE Trans. PAMI 19, 1300–1305 (1997)Google Scholar
  7. 7.
    Moghadam, B., Jebara, T., Pentland, A.: Bayesian face recognition, MERL Technical Report, TR-2000-42 (2002)Google Scholar
  8. 8.
    Zhang, H., Berg, A., Maire, M., Malik, J.: SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: CVPR (2006)Google Scholar
  9. 9.
    Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: ICCV (2007)Google Scholar
  10. 10.
    Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Trans. PAMI 18, 607–616 (1996)Google Scholar
  11. 11.
    Domeniconi, C., Gunopulos, D.: Adaptive nearest neighbor classification using support vector machines. In: NIPS (2001)Google Scholar
  12. 12.
    Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning, with application to clustering with side information. In: NIPS (2002)Google Scholar
  13. 13.
    Shalev-Shwartz, S., Singer, Y., Ng, A.: Online and batch learning of pseudo metrics. In: ICML (2004)Google Scholar
  14. 14.
    Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. In: NIPS (2005)Google Scholar
  15. 15.
    Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: NIPS (2003)Google Scholar
  16. 16.
    Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance functions for shape-based image retreval and classification. In: ICCV (2007)Google Scholar
  17. 17.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IJCV 25, 64–577 (2003)Google Scholar
  18. 18.
    Elgammal, A., Davis, L.S.: Probabilistic tracking in joint feature-spatial spaces. In: ICCV (2003)Google Scholar
  19. 19.
    Gheissari, N., Sebastian, T., Tu, P., Rittscher, J., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR (2006)Google Scholar
  20. 20.
    Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: ICCV (2007)Google Scholar
  21. 21.
    Li, J., Zhou, S.K., Chellappa, R.: Appearance context modeling under geometric context. In: ICCV (2005)Google Scholar
  22. 22.
    Scott, D.: Multivariate density estimation. Wiley Interscience, Hoboken (1992)zbMATHCrossRefGoogle Scholar
  23. 23.
    Zhao, L., Davis, L.S.: Iterative figure-ground discrimination. In: ICPR (2004)Google Scholar
  24. 24.
    Yu, Y., Harwood, D., Yoon, K., Davis, L.S.: Human appearance modeling for matching across video sequences. Mach. Vis. Appl. 18, 139–149 (2007)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.S.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11, 172–185 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zhe Lin
    • 1
  • Larry S. Davis
    • 1
  1. 1.Institute of Advanced Computer StudiesUniversity of MarylandCollege Park

Personalised recommendations