Leaking Fluids

  • Kiwon Um
  • JungHyun Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5358)


This paper proposes a novel method to simulate the flow of the fluids passing through the boundary, which has not been studied in the previous works. The proposed method requires no significant modification of the existing simulation techniques. Instead, it extends the common fluid simulation techniques by adding two post-steps, adjustment and projection. Therefore, the proposed method can be easily integrated with existing techniques. Specifically, the method extends the staggered Marker-and-Cell scheme, semi-Lagrangian advection, level set method, fast marching method, etc. With the extensions, the method can successfully produce the realistic behavior of the leaking fluids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stam, J.: Stable fluids. In: SIGGRAPH 1999: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 121–128. ACM Press/Addison-Wesley Publishing Co., New York (1999)CrossRefGoogle Scholar
  2. 2.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH 2001: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 23–30. ACM, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: SIGGRAPH 2001: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 15–22. ACM Press, New York (2001)CrossRefGoogle Scholar
  4. 4.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: SIGGRAPH 2004: ACM SIGGRAPH 2004 Papers, pp. 457–462. ACM, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large bodies of water by coupling two and three dimensional techniques. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 805–811. ACM, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. In: SIGGRAPH 2004: ACM SIGGRAPH 2004 Papers, pp. 377–384. ACM, New York (2004)CrossRefGoogle Scholar
  7. 7.
    Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 973–981. ACM, New York (2005)CrossRefGoogle Scholar
  8. 8.
    Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 Papers. ACM Press, New York (to appear, 2008)Google Scholar
  9. 9.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 1703–1759 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Anderson, J.D.: Computational Fluid Dynamics: The Basics With Applications. McGraw-Hill, New York (1995)Google Scholar
  11. 11.
    Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process 58, 471–483 (1996)CrossRefGoogle Scholar
  12. 12.
    Bridson, R., Müller-Fischer, M.: Fluid simulation: Siggraph 2007 course notes video files associated with this course are available from the citation page. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 courses, pp. 1–81. ACM, New York (2007)Google Scholar
  13. 13.
    Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical report, Pittsburgh, PA, USA (1994)Google Scholar
  15. 15.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces: Applied Mathematical Sciences, vol. 153. Springer, New York (2003)MATHGoogle Scholar
  16. 16.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph 21, 163–169 (1987)CrossRefGoogle Scholar
  17. 17.
    Adalsteinsson, D., Sethian, J.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, New York (1999)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kiwon Um
    • 1
  • JungHyun Han
    • 1
    • 2
  1. 1.Department of Computer and Radio Communications EngineeringKorea UniversitySouth Korea
  2. 2.Institute of Information Technology AdvancementMinistry of Knowledge EconomyKorea

Personalised recommendations