Generation of Unit-Width Curve Skeletons Based on Valence Driven Spatial Median (VDSM)

  • Tao Wang
  • Irene Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5358)


3D medial axis (skeleton) extracted by a skeletonization algorithm is a compact representation of a 3D model. Among all connectivity-preservation skeletonization methods, 3D thinning algorithms are generally faster than the others. However, most 3D thinning algorithms cannot guarantee generating a unit-width curve skeleton, which is desirable in many applications, e.g. 3D object similarity match and retrieval. This paper presents a novel valence driven spatial median (VDSM) algorithm, which eliminates crowded regions and ensures that the output skeleton is unit-width. The proposed technique can be used to refine skeletons generated from 3D skeletonization algorithms to achieve unit-width. We tested the VDSM algorithm on 3D models with very different topologies. Experimental results demonstrate the feasibility of our approach.


Voronoi Diagram Medial Axis Object Point Joint Point Curve Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  2. 2.
    Cornea, N.D.: Curve-Skeletons: Properties, Computation And Applications, Ph.D. Thesis, The State University of New Jersey (May 2007)Google Scholar
  3. 3.
    Ma, C.M., Sonka, M.: A fully parallel 3D thinning algorithm and its applications. Computer Vision and Image Understanding 64(3), 420–433 (1996)CrossRefGoogle Scholar
  4. 4.
    Palagyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters 19(7), 613–627 (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Lohoua, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on P-simple points. Discrete Applied Mathematics 151, 198–228 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pudney, C.: Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images. Computer Vision and Image Understanding 72(3), 404–413 (1998)CrossRefGoogle Scholar
  7. 7.
    Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New York (1982)Google Scholar
  8. 8.
    Arcelli, C., di Baja, G.S.: A width independent fast thinning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 7, 463–474 (1985)CrossRefGoogle Scholar
  9. 9.
    Ogniewicz, R.L., Ilg, M.: Voronoi Skeletons Theory and Applications. CVPR 1992 (1992)Google Scholar
  10. 10.
    Ogniewicz, R.L., Kubler, O.: Hierarchic Voronoi Skeletons. Pat. Rec., 343–359 (1995)Google Scholar
  11. 11.
    Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An algorithm for the medial axis transform of 3d polyhedral solids. IEEE T. VCG 2(1), 44–61 (1996)Google Scholar
  12. 12.
    Giblin, P., Kimia, B.B.: A formal classification of 3D medial axis points and their local geometry. In: CVPR 2000 (2000)Google Scholar
  13. 13.
    Leymarie, F.F., Kimia, B.B.: The Shock Scaffold for Representing 3D Shape. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 216–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Leymarie, F.F., Kimia, B.B.: Computation of the Shock Scaffold for Unorganized Point Clouds in 3D. CVPR 2003 (2003)Google Scholar
  15. 15.
    Wang, T., Basu, A.: A note on A fully parallel 3D thinning algorithm and its applications. Pattern Recognition Letters 28(4), 501–506 (2007)CrossRefGoogle Scholar
  16. 16.
    Brunner, D., Brunnett, G.: An extended concept of voxel neighborhoods for correct thinning in mesh segmentation. In: Spring Conference on Computer Graphics, pp. 119–125 (2005)Google Scholar
  17. 17.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische Mathematik, pp. 269–271 (1959)Google Scholar
  18. 18.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn., pp. 595–601. MIT Press and McGraw-Hill (2001)Google Scholar
  19. 19.
    Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton Based Shape Matching and Retrieval. In: Shape Modeling International 2003, pp. 130–142 (2003)Google Scholar
  20. 20.
  21. 21.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark, Shape Modeling International, Genova, Italy (June 2004)Google Scholar
  22. 22. (retrieved in April 2008)
  23. 23.
    Nooruddin, F., Turk, G.: Simplification and Repair of Polygonal Models Using Volumetric Techniques. IEEE Trans. on VCG 9(2), 191–205 (2003)Google Scholar
  24. 24.
    Attali, D., Montanvert, A.: Computing and Simplifying 2D and 3D Continuous Skeletons. Computer Vision And Image Understanding 67(3), 261–273 (1997)CrossRefGoogle Scholar
  25. 25.
    Svenssona, S., di Bajab, G.S.: Simplifying curve skeletons in volume images. Computer Vision and Image Understanding 90, 242–257 (2003)CrossRefGoogle Scholar
  26. 26.
    Masse, J.C., Plante, J.F.: A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators. Comput. Statistics & Data Analysis 42, 1–26 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Wang, Y.S., Lee, T.Y.: Curve-Skeleton Extraction Using Iterative Least Squares Optimization. IEEE T. VCG 14(4), 926–936 (2008)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tao Wang
    • 1
  • Irene Cheng
    • 1
  1. 1.Computing Science DepartmentUniversity of AlbertaAlbertaCanada

Personalised recommendations