Towards Human Centered Ambient Intelligence

  • Thomas Plötz
  • Christian Kleine-Cosack
  • Gernot A. Fink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5355)

Abstract

In this paper we present a novel approach to the integration of humans into AmI environments. The key aspect of the concept which we call human centered Ami is a dynamic and active user model which creates a virtual doppelganger of the user on software level. This agent not only complies to the specific characteristics of humans but directly affects and triggers environmental activities. In fact the user’s persona and behavior is mapped to system level. Utilizing this doppelganger we introduce the integration of the users’ capabilities and skills into the functionality of the environment. Human services enrich intelligent environments and allow to overcome the “all-or-nothing” dilemma which we identified in conventional approaches. The concept of human centered AmI is put into effect within the perception-oriented intelligent environment FINCA. Results of a Wizard-of-Oz experiment with real users show the benefits of the presented approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiser, M.: The computer for the 21st century. Scientific American 265 (1991)Google Scholar
  2. 2.
    Streitz, N., Kameas, A., Mavrommati, I. (eds.): The Disappearing Computer – Interaction Design, System Infrastructures and Applications for Smart Environments. LNCS. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Brooks, R.A.: The Intelligent Room project. In: CT 1997: Proceedings of the 2nd International Conference on Cognitive Technology (CT 1997), Washington, DC, USA, p. 271. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  4. 4.
    Hirsh, H., Coen, M., Mozer, M., Hasha, R., Flanagan, J.: Room Service, AI-Style. IEEE Intelligent Systems 14(2), 8–19 (1999)CrossRefGoogle Scholar
  5. 5.
    Coen, M.H.: Design principles for intelligent environments. In: AAAI 1998/IAAI 1998: Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artificial intelligence, Menlo Park, CA, USA, American Association for Artificial Intelligence, pp. 547–554 (1998)Google Scholar
  6. 6.
    Coen, M., Phillips, B., Warshawsky, N., Weisman, L., Peters, S., Finin, P.: Meeting the computational needs of intelligent environments: The metaglue system. In: Proceedings of MANSE 1999, Dublin, Ireland (1999)Google Scholar
  7. 7.
    IST Advisory Group (ISTAG): Ambient intelligence: from vision to reality. Technical report, Brussels, Belgium, ISTAG draft consolidated report (2003)Google Scholar
  8. 8.
    Natis, Y.V.: Service-oriented architecture scenario, Research Note, Gartner Research (2003)Google Scholar
  9. 9.
    Lee, C., Nordstedt, D., Helal, S.: Enabling smart spaces with osgi. Pervasive Computing 2(3), 89–94 (2003)CrossRefGoogle Scholar
  10. 10.
    Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart house: A programmable pervasive space. Computer 38(3), 50–60 (2005)CrossRefGoogle Scholar
  11. 11.
    Danielsen, T., Pankoke-Babatz, U., Prinz, W., Patel, A., Pays, P.A., Smaaland, K., Speth, R.: The amigo project: advanced group communication model for computer-based communications environment. In: CSCW 1986: Proceedings of the 1986 ACM conference on Computer-supported cooperative work, pp. 115–142. ACM, New York (1986)CrossRefGoogle Scholar
  12. 12.
    Plötz, T.: The FINCA: A Flexible, Intelligent eNvironment with Computational Augmentation (2007), http://finca.irf.de
  13. 13.
    Jameson, A., Kruger, A.: Preface to the special issue on user modeling in ubiquitous computing. User Modeling and User-Adapted Interaction 15(3-4), 193–195 (2005)CrossRefGoogle Scholar
  14. 14.
    Bravo, J., Alamán, X., Riesgo, T.: Ubiquitous computing and ambient intelligence: New challenges for computing. Journal of Universal Computer Science 12(3), 233–235 (2007)Google Scholar
  15. 15.
    Heckmann, D.: Ubiquitous User Modeling. PhD thesis, Department of Computer Science, Saarland University, Germany (November 2005)Google Scholar
  16. 16.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley Professional, Reading (January 1995)Google Scholar
  17. 17.
    Kray, C., Larsen, L.B., Olivier, P., Biemans, M., van Bunningen, A., Fetter, M., Jay, T., Khan, V.J., Leitner, G., Mulder, I., Müller, J., Plötz, T., de Vallejo, I.L.: Evaluating ubiquitous systems with users. In: AmI 2007: Workshop Proceedings of the European Conference on Ambient Intelligence, Darmstadt, Germany (2007)Google Scholar
  18. 18.
    Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T.: Human-Computer Interaction. Addison-Wesley, Reading (1994)Google Scholar
  19. 19.
    Likert, R.: A technique for the measurement of attitudes. Archives of Psychology 22(140), 1–55 (1932)Google Scholar
  20. 20.
    Pashler, H.: Dual-task interference in simple tasks: data and theory. Psychological Bulletin 116(2), 220–244 (1994)CrossRefGoogle Scholar
  21. 21.
    Olive, T.: Working memory in writing: Empirical evidence from the dual-task technique. European Psychologist 9(1), 32–42 (2004)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  23. 23.
    Minium, E.W.: Statistical reasoning in psychology and education, 2nd edn. Wiley, New York (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Plötz
    • 1
  • Christian Kleine-Cosack
    • 1
  • Gernot A. Fink
    • 1
  1. 1.Intelligent Systems Group, Robotics Research InstituteTechnische Universität DortmundDortmundGermany

Personalised recommendations