Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry

  • Hiroshi Fukuda
  • Nobuaki Mutoh
  • Gisaku Nakamura
  • Doris Schattschneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4535)


We describe computer algorithms that can enumerate and display, for a given n > 0 (in theory, of any size), all n-ominoes, n-iamonds, and n-hexes that can tile the plane using only rotations; these sets necessarily contain all such tiles that are fundamental domains for p4, p3, and p6 isohedral tilings. We display the outputs for small values of n. This expands on earlier work [3].


Symmetry Group Rotational Symmetry Fundamental Domain Triangular Lattice White Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups. Springer, New York (1965)zbMATHGoogle Scholar
  2. 2.
    Schattschneider, D.: The plane symmetry groups: their recognition and notation. American Mathematical Monthly 85, 439–450 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fukuda, H., Mutoh, N., Nakamura, G., Schattschneider, D.: A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry. Graphs and Combinatorics (suppl. 23), 259–267 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Heesch, H., Kienzle, O.: Flächenschluss. System der Formen lückenlos aneinanderschliessender Flachteile. Springer, Heidelberg (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hiroshi Fukuda
    • 1
  • Nobuaki Mutoh
    • 2
  • Gisaku Nakamura
    • 3
  • Doris Schattschneider
    • 4
  1. 1.College of Liberal Arts and SciencesKitasato UniversityKanagawaJapan
  2. 2.School of Administration and InformaticsUniversity of ShizuokaShizuokaJapan
  3. 3.Research Institute of EducationTokai UniversityShibuya-ku TokioJapan
  4. 4.Mathematics Dept.PPHAC Moravian CollegeBethlehemUSA

Personalised recommendations