Nonlinear Analysis of Physiological Time Series

  • Anisoara Paraschiv-Ionescu
  • Kamiar Aminian


Biological systems and processes are inherently complex, nonlinear and nonstationary, and that is why nonlinear time series analysis has emerged as a novel methodology over the past few decades. The aim of this chapter is to provide a review of main approaches of nonlinear analysis (fractal analysis, chaos theory, complexity measures) in physiological research, from system modeling to methodological analysis and clinical applications.


Lyapunov Exponent Chronic Fatigue Syndrome Surrogate Data Detrended Fluctuation Analysis Original Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abarbanel, H (1996) Analysis of Observed Chaotic Data. Springer -Verlag, New YorkCrossRefzbMATHGoogle Scholar
  2. 2.
    Abarbanel H, Brown R and Kennel M B (1991) Variation of Lyapunov exponent on a strange attractor. J Nonlinear Sci 1:175–199MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abarbanel H and Kennel M B (1993) Local false nearest neighbors and dynamical dimensions from observed chaotic data. Phys Rev E 47:3057–3068Google Scholar
  4. 4.
    Aboy M, Hornero R, Abásolo D and Álvarez D (2006) Interpretation of the lempel-ziv complexity measure in the context of biomedical signal analysis. IEEE Trans. Biomed Eng 53(11):2282–2288CrossRefGoogle Scholar
  5. 5.
    Accardo A, Affinito M, Carrozzi M and Bouquet F (1997) Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 77:339–350Google Scholar
  6. 6.
    Acharya U R, Kannathal N, Sing O W, Ping L Y and Chua T (2004) Heart rate analysis in normal subjects of various age groups. Biomed Eng Online 3:24CrossRefGoogle Scholar
  7. 7.
    Akay M, Sekine M, Tamura T, Higashi Y and Fujimoto T (2004) Fractal dynamics of body motion in post-stroke hemiplegic patients during walking. J Neural Eng, 1:111–116CrossRefGoogle Scholar
  8. 8.
    Al-Angari H M and Sahakian A V (2007) Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans Biomed Eng 54:1900–1904Google Scholar
  9. 9.
    Amaral L A N, Ivanov P Ch, Aoyagi N, Hidaka I, Tomono S, Goldberger A L, Stanley H E and Yamamoto Y (2001). Behavioral-independent features of complex heartbeat dynamics. Phys Rev Lett 86:6026–6029CrossRefGoogle Scholar
  10. 10.
    Amaral L A N, Bezerra Soares D J, da Silva L R et al. (2004) Power law temporal auto-correlations in day-long records of human physical activity and their alteration with disease. Europhys Lett 66(3):448CrossRefGoogle Scholar
  11. 11.
    Arneodo A, Grasseau G and Holschneider M (1988) Wavelet transform of multi-fractals. Phys Rev Lett 61:2281–2284Google Scholar
  12. 12.
    Arif M, Ohtaki Y, Nagatomi R and Inooka H (2004) Estimation of the Effect of Cadence on Gait Stability in Young and Elderly People Using Approximate Entropy Technique. Meas Sci Rev 4:29–40Google Scholar
  13. 13.
    Bell I and Koithan M (2006) Models for the study of whole systems. Integrat Cancer Ther 293–307Google Scholar
  14. 14.
    Beuter A, Glass L, Mackey M C and Titcombe M S (2003). Nonlinear Dynamics in Physiology and Medicine. Interdisciplinary Applied Mathematics, Vol. 25, Springer, New York, 2003, xxvi+434Google Scholar
  15. 15.
    Brandon R (1996) Reductionism versus holism versus mechanism. Concepts and Methods in Evolutionary Biology, Cambridge: Cambridge University Press, 179–204zbMATHGoogle Scholar
  16. 16.
    Caldirola D, Bellodi L, Caumo A, Migliarese G, Perna G (2004) Approximate entropy of respiratory patterns in panic disorder. Am J Psychiatry 161:79–87CrossRefGoogle Scholar
  17. 17.
    Chen Z, Ivanov P Ch, Hu K and Stanley H E (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65: 041197Google Scholar
  18. 18.
    Collins J J, De Luca C J, Burrows A and Lipsitz L A (1995) Age-related changes in open-loop and closed-loop postural control mechanisms. Exp Brain Res 104:480–492Google Scholar
  19. 19.
    Collins J J and De Luca C J (1994) Random walking during quiet standing. Phys Rev Lett 73(5):764–767CrossRefGoogle Scholar
  20. 20.
    Costa M, Goldberger A L and Peng C K (2002) Multiscale entropy analysis of complex physioogic time series. Phys Rev Lett 89:068102Google Scholar
  21. 21.
    Cox D R and Isham V (1980) Point Processes. London, U.K.: Chapman and HallGoogle Scholar
  22. 22.
    Cox D R and Lewis P A W (1966) The Statistical Analysis of Series of Events. New York, WileyGoogle Scholar
  23. 23.
    Dingwell J B and Marin L C (2006) Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J Biomech 39:444–452CrossRefGoogle Scholar
  24. 24.
    Dingwell J B and Cusumano J P (2000) Nonlinear Time Series Analysis of Normal and Pathological Human Walking. Chaos 10(4):848–863CrossRefzbMATHGoogle Scholar
  25. 25.
    Doyle T L A, Dugan E L, Humphries B and Newton R U (2004) Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. Int J Med Sci 1(1):11–20CrossRefGoogle Scholar
  26. 26.
    Duarte M and Zatsiorsky V M (2000) On the fractal properties of natural human standing. Neurosci Lett 283:173–176CrossRefGoogle Scholar
  27. 27.
    Eckmann J-P and Ruelle D (1992) Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 6:185–187MathSciNetCrossRefGoogle Scholar
  28. 28.
    Eckmann J-P, Kamphorst S O, Ruelle D and Ciliberto D (1992) Lyapunov exponents from time series. Phys Rev A 34, 4971Google Scholar
  29. 29.
    van Emmerick R E A and van Wegen E E H (2002) On the functionalaspects of variability in postural control. Exerc Sport Sci Rev 30:177–183CrossRefGoogle Scholar
  30. 30.
    Elger C E, Widman G, Andrzejak R et al. (2000) Nonlinear EEG analysis and its potential role in epileptology. Epilepsia 41 Suppl 3:S34–38CrossRefGoogle Scholar
  31. 31.
    Esteller R, Vachtsevanos G, Echauz J and Litt B (2001) A comparison of waveform fractal dimension algorithms. IEEE Trans Circuits Syst I: Fundam. Theory Appl 48:177–183CrossRefGoogle Scholar
  32. 32.
    Fraser A M and Swinney H L (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Galka A (2000) Topics in Nonlinear Time Series Analysis – With Implications for EEG Analysis (Advanced Series in Nonlinear Dynamics, edited by R.S. MacKay, Vol. 14), 342 pages, World Scientific Publishing Company, Singapore; ISBN 981-02-4148-8Google Scholar
  34. 34.
    Ganea R, Paraschiv-Ionescu A, Salarian A et al. (2007) Kinematics and dynamic complexity of postural transitions in frail elderly subjects. Conf Proc IEEE Eng Med Biol Soc 2007, 1:6118–6121Google Scholar
  35. 35.
    Goldberger A L (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314CrossRefGoogle Scholar
  36. 36.
    Goldberger A L (1997) Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med 40:543–561Google Scholar
  37. 37.
    Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P Ch, Mark R G, Mietus J E, Moody G B, Peng C K and Stanley H E (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215–e220 [Circulation Electronic Pages cgi/content/full/101/23/e215]
  38. 38.
    Goldberger A L, Peng C K and Lipsitz L A (2002) What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23:23–26CrossRefGoogle Scholar
  39. 39.
    Goldberger A L (2006) Giles f. Filley lecture. Complex systems. Proc Am Thorac Soc 3:467–471Google Scholar
  40. 40.
    Govindan R B et al. (2007) Detrended fluctuation analysis of short datasets: An application to fetal cardiac data. Physica D 226:23–31MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Grassberger P (1990) An optimal box-assisted algorithm for fractal dimensions. Phys Lett A 148:63–68Google Scholar
  42. 42.
    Grassberger P and Procaccia I (1983a) Measuring the strangeness of a strange attractors, Physica D 9:189–208Google Scholar
  43. 43.
    Grassberger P and Procaccia I (1983b) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591Google Scholar
  44. 44.
    Grassberger P, Schreiber T and Schaffrath C (1991) Non-linear time sequence analysis. Internat J Bifurcation and Chaos 1:521–547Google Scholar
  45. 45.
    Hausdorff J M, Peng C K, Ladin Z et al. (1995) Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol 78:349–358Google Scholar
  46. 46.
    Hausdorff J M, Purdon P L, Peng C K et al. (1996) Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol 80:1448–1457Google Scholar
  47. 47.
    Hausdorff J M, Mitchell S L, Firtion R, Peng C K et al. (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. J Appl Physiol 82:262–269Google Scholar
  48. 48.
    Hausdorff J M, Lertratanakul A, Cudkowicz M E et al. (2000) Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol 88:2045–2053Google Scholar
  49. 49.
    Havstad J W and Ehlers C L (1989) Attractor dimension of nonstationary dynamical systems from small data sets. Phys Rev A 39(2):845–853MathSciNetCrossRefGoogle Scholar
  50. 50.
    Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31:277–283MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Ho K K, Moody G B, Peng C K et al. (1997) Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96:842–848CrossRefGoogle Scholar
  52. 52.
    Hu K, Ivanov P Ch, Zhi C et al. (2001) Effects of trends on detrended fluctuation analysis. Phys Rev E 64:011114Google Scholar
  53. 53.
    Huikuri H V, Makikallio T H, Airaksinen K E et al. (1998) Power-law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation 97:2031–2036CrossRefGoogle Scholar
  54. 54.
    Huikuri H V, Makikallio T H, Peng C K et al. (2000) Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101:47–53CrossRefGoogle Scholar
  55. 55.
    Ivanov P Ch, Amaral L A N, Goldberger A L et al. (1999) Multifractal in human heartbeat dynamics. Nature 399:461–465CrossRefGoogle Scholar
  56. 56.
    Jospin M et al. (2007) Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE Trans Biomed Eng 54:840–846CrossRefGoogle Scholar
  57. 57.
    Kantelhardt J W, Koscielny-Bunde E, Rego H H A et al. (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A 295, 441–454CrossRefzbMATHGoogle Scholar
  58. 58.
    Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Havlin H, Bunde A and Stanley H E (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316:87–114Google Scholar
  59. 59.
    Kantelhardt J W, Rybski D, Zschiegner S A et al. (2003) Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Physica A 330: 240–245Google Scholar
  60. 60.
    Kantz H (1988) Fractals and the analysis of waveforms. Comput Biol Med 18(3):145–156MathSciNetCrossRefGoogle Scholar
  61. 61.
    Kantz H (1994) A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 185:77Google Scholar
  62. 62.
    Kantz H and Schreiber T (1997) Nonlinear Time Series Analysis, CambridgezbMATHGoogle Scholar
  63. 63.
    Kaplan D T and Glass L (1995) Understanding Nonlinear Dynamics. New York: Springer VerlagGoogle Scholar
  64. 64.
    Kaplan D T (1997) Nonlinearity and nonstationarity: the use of surrogate data in interpreting fluctuations. In: Frontiers of Blood Pressure and Heart Rate Analysis, edited by M. Di Rienzo, G. Mancia, G. Parati, A. Pedotti, and A. Zanchetti. Amsterdam: IOSGoogle Scholar
  65. 65.
    Kennel M B, Brown R, and Abarbanel H (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403–3411Google Scholar
  66. 66.
    Lehnertz K (1999) Non-linear time series analysis of intracranial EEG recordings in patient with epilepsy – an overview. Int J Psychophysiol 34:45–52CrossRefGoogle Scholar
  67. 67.
    Leistedt S et al. (2007) Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis. Clinical Neurophysiol 118:940–950CrossRefGoogle Scholar
  68. 68.
    Lipsitz L A (2002) The dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci 57:B115–B125CrossRefGoogle Scholar
  69. 69.
    Lipsitz L A (2004) Physiological Complexity, Aging, and the Path to Frailty. Sci Aging Knowl Environ 16.pe16Google Scholar
  70. 70.
    Lowen S B and Teich M C (2005) Fractal-Based Point Processes. Hoboken, NJ: WileyCrossRefGoogle Scholar
  71. 71.
    Lowen S B and Teich M C (1991) Doubly stochastic point process driven by fractal shot noise. Phys Rev A 43:4192–4215Google Scholar
  72. 72.
    Makikallio T H, Seppanen T, Airaksinen K E et al. (1997) Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol 80: 779–783CrossRefGoogle Scholar
  73. 73.
    Makikallio T H, Ristimae T, Airaksinen K E et al. (1998) Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am J Cardiol 81:27–31CrossRefGoogle Scholar
  74. 74.
    Makikallio T H, Seppanen T, Niemela M et al. (1996) Abnormalities in beat-to-beat complexity of heart rate dynamics in patients with a previous myocardial infarction. J Am Coll Cardiol 28:1005–1011CrossRefGoogle Scholar
  75. 75.
    Makikallio T H, Huikuri H V, Hintze U et al. (2001) Fractal analysis and time and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am J Cardiol 87:178–182CrossRefGoogle Scholar
  76. 76.
    Mutch W A C, Graham M R, Girling L G and Brewster J F (2005) Fractal ventilation enhances respiratory sinus arrhythmia. Respir Res 6:41Google Scholar
  77. 77.
    Nayfeh A H and Balachandran B (1995) Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. New York: Wiley-InterscienceCrossRefzbMATHGoogle Scholar
  78. 78.
    Nolte G, Ziehe A and Muller K R (2001) Noisy robust estimates of correlation dimension and K2 entropy. Phys Rev E 64:016112Google Scholar
  79. 79.
    Ohashi K, Bleijenberg G, van der Werf S et al. (2004) Decreased fractal correlation in diurnal physical activity in chronic fatigue syndrome. Methods Inf Med 43:26–29Google Scholar
  80. 80.
    Oswiecimka P, Kwapien J and Drozdz S (2006) Wavelet versus detrended fluctuation analysis of multifractal structures. Phys Rew E 74(2): 016103–016117Google Scholar
  81. 81.
    Paraschiv-Ionescu A, Buchser E, Rutschmann B et al. (2008). Nonlinear analysis of the human physical activity patterns in health and disease. Phys Rev E 77:021913Google Scholar
  82. 82.
    Peng C K, Buldyrev S V, Havlin S et al. (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685Google Scholar
  83. 83.
    Peng C K, Havlin S, Stanley H E et al. (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time-series. Chaos 5:82–87CrossRefGoogle Scholar
  84. 84.
    Peng C K, Mietus J E, Liu Y, Lee C, Hausdorff J M, Stanley H E, Goldberger A L and Lipsitz L A (2002) Quantifying fractal dynamics of human respiration:age and gender effects. Ann Biomed Eng 30(5):683–692Google Scholar
  85. 85.
    Petrosian A (1995). Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. Proc IEEE Symp Computer- Based Medical Syst 212–217Google Scholar
  86. 86.
    Pincus S M (1991). Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88(6):2297–2301Google Scholar
  87. 87.
    Richman J S and Moorman J R (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049Google Scholar
  88. 88.
    Rosenstein M T, Collins J J and De Luca C J (1993) Reconstruction expansion as a geometry-based framework for choosing proper delay times Physica D 65:117Google Scholar
  89. 89.
    Sachs D, Lovejoy S and Schertzer D (2002) The multifractal scaling of cloud radiances from 1 M to 1 KM Fractals 10(3):253–264Google Scholar
  90. 90.
    Schreiber T and Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77:635–638CrossRefGoogle Scholar
  91. 91.
    Schreiber T and Schmitz A (2000) Surrogate time series. Physica D 142:346–382Google Scholar
  92. 92.
    Schreiber T (1999). Is nonlinearity evident in time series of brain electrical activity?. In: Lehnertz K et al. (Ed), Chaos in Brain? Interdisc. Workshop, World Scientific, Singapore 13–22Google Scholar
  93. 93.
    Schurmann T and Grassberger P (1996) Entropy estimation of symbol sequences. Chaos 6:414–427MathSciNetCrossRefGoogle Scholar
  94. 94.
    Sekine M, Akay M, Tamura T et al. (2004). Fractal dynamics of body motion in patients with Parkinson’s disease. J Neural Eng 1:8–15CrossRefGoogle Scholar
  95. 95.
    Sevcik C (1998). A Procedure to Estimate the Fractal Dimension of Waveforms. Appeared in Complexity International 5, the article is also available at the URL: ci/vol05/sevcik/sevcik.htm
  96. 96.
    Stanley H E, Amaral L A N, Goldberger A L, Halvin S, Ivanov P Ch and Peng C.-K. (1999). Statistical physics and physiology: Monofractal and multifractal approaches. Physica A 270:309–324CrossRefGoogle Scholar
  97. 97.
    Stam C J (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116:2266–2301. doi: 10.1016/j.clinph.2005.06.011CrossRefGoogle Scholar
  98. 98.
    Stam C J (2006) Nonlinear brain dynamics. New York: Nova Science PublishersGoogle Scholar
  99. 99.
    Takens F (1981) Detecting Strange Attractors in Turbulence. Warwick, Lecture notes in Mathematics, v.898, Ed. D. Rand & L.-S Young, Springer, 366–381Google Scholar
  100. 100.
    Teich M C, Turcott R G and Lowen S B (1990) The fractal doubly stochastic Poisson point process as a model for the cochlear neural spike train. In: The mechanics and biophysics of hearing (Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR, eds), 354–361. New York: SpringerGoogle Scholar
  101. 101.
    Teich M C (1992) Fractal neuronal firing patterns. In: Single Neurons Computation. edited by McKenna T, Davis J, and Zormetzer SF. Boston, MA: Academic, 589–625Google Scholar
  102. 102.
    Teich M C, Heneghan C, Lowen S B et al. (1997). Fractal character of the neuronal spike train in the visual system of the cat. J Opt Soc Am A 14:529–546Google Scholar
  103. 103.
    Theiler J (1986) Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev A 34(3):2427–2432CrossRefGoogle Scholar
  104. 104.
    Theiler J, Eubank S, Longtin A et al. (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94CrossRefzbMATHGoogle Scholar
  105. 105.
    Theiler J (1995) On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Phys Lett A 196:335–341CrossRefGoogle Scholar
  106. 106.
    Thurner S, Lowen S B, Feurstein M C et al. (1997). Analysis, synthesis and estimation of fractal-rate stochastic point processes. Fractals 5:565–595CrossRefzbMATHGoogle Scholar
  107. 107.
    Torres M, Añino M, Gamero L and Gemignani M (2001) Automatic detection of slight changes in nonlinear dynamical systems using multiresolution entropy tools, Int J Bifurc Chaos 11:967–981CrossRefGoogle Scholar
  108. 108.
    Turcott R G and Teich M C (1996) Fractal character of the electrocardiogram: distinguishing heart-failure and normal patients. Ann Biomed Eng 24:269–293CrossRefGoogle Scholar
  109. 109.
    Vaillancourt D E and Newell K M (2002a) Changing complexity in human behavior and hysiology through aging and disease. Neurobiol Aging 23:1–11CrossRefGoogle Scholar
  110. 110.
    Vaillancourt D E and Newell K M (2002b) Complexity in aging and disease: response to commentaries. Neurobiol Aging 23:27–29CrossRefGoogle Scholar
  111. 111.
    Vikman S, Mäkikallio TH, Yli-Mäyry S, Pikkujämsä S et al. (1999). Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation Circulation 100, 2079–2084Google Scholar
  112. 112.
    Wolf A, Swift J B, Swinney H L et al. (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317Google Scholar
  113. 113.
    Yates F E (1994) Order and complexity in dynamical systems: homeodynamics as a generalized mechanics for biology. Math Comp Model 1:49–74CrossRefGoogle Scholar
  114. 114.
    Yeragani V K, Radhakrishna R K, Tancer M et al. (2002) Non-linear measures of respiration: respiratory irregularity and increased chaos of respiration in patients with panic disorder. Neuropsychobiology 46:111–120CrossRefGoogle Scholar
  115. 115.
    Zebrowski J J, Poplawska W, Baranowski R and Buchner T (2000) Symbolic dynamics and complexity in a physiological time series. Chaos Solitons & Fractals 11:1061–1075CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Laboratory of Movement Analysis and MeasurementEcole Polytechnique Federale de Lausanne (EPFL)Switzerland

Personalised recommendations