Advertisement

The Right Expert at the Right Time and Place

From Expertise Identification to Expertise Selection
  • Pavel Serdyukov
  • Ling Feng
  • Arthur van Bunningen
  • Sander Evers
  • Harold van Heerde
  • Peter Apers
  • Maarten Fokkinga
  • Djoerd Hiemstra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5345)

Abstract

We propose a unified and complete solution for expert finding in organizations, including not only expertise identification, but also expertise selection functionality. The latter two include the use of implicit and explicit preferences of users on meeting each other, as well as localization and planning as important auxiliary processes. We also propose a solution for privacy protection, which is urgently required in view of the huge amount of privacy sensitive data involved. Various parts are elaborated elsewhere, and we look forward to a realization and usage of the proposed system as a whole.

Keywords

Knowledge Management Privacy Protection Explicit Preference Implicit Preference Expert Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman, M.S., Wulf, V., Pipek, V.: Sharing Expertise: Beyond Knowledge Management. MIT Press, Cambridge (2002)Google Scholar
  2. 2.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: 28th Int’l Conf. on Very Large Databases (VLDB), Hong Kong (2002)Google Scholar
  3. 3.
    Agrawal, R., Wimmers, E.L.: A framework for expressing and combining preferences. In: SIGMOD 2000: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 297–306. ACM Press, New York (2000)CrossRefGoogle Scholar
  4. 4.
    Anciaux, N., Bouganim, L., van Heerde, H.J.W., Pucheral, P., Apers, P.M.G.: Instantdb: Enforcing timely degradation of sensitive data. In: Proceedings of the 24th International Conference on Data Engineering, April 2008. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  5. 5.
    Anciaux, N.L.G., Bouganim, L., van Heerde, H.J.W., Pucheral, P., Apers, P.M.G.: Instantdb: Enforcing timely degradation of sensitive data. In: Proceedings of the 24th International Conference on Data Engineering (ICDE 2008), Cancun, Mexico, April 2008, pp. 1373–1375. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  6. 6.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  7. 7.
    Balog, K., Bogers, T., Azzopardi, L., de Rijke, M., van den Bosch, A.: Broad expertise retrieval in sparse data environments. In: SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 551–558. ACM, New York (2007)Google Scholar
  8. 8.
    Baumard, P.: Tacit Knowledge in Organizations. Sage Publications, Inc., Thousand Oaks (2001)Google Scholar
  9. 9.
    Becerra-Fernandez, I.: Facilitating the online search of experts at NASA using expert seeker people-finder. In: PAKM 2000, Third International Conference on Practical Aspects of Knowledge Management (2000)Google Scholar
  10. 10.
    Becerra-Fernandez, I.: Searching for experts on the web: A review of contemporary expertise locator systems. ACM Trans. Inter. Tech. 6(4), 333–355 (2006)CrossRefGoogle Scholar
  11. 11.
    Bertino, E., Byun, J.-W., Li, N.: Privacy-preserving database systems. In: Aldini, A., Gorrieri, R., Martinelli, F. (eds.) FOSAD 2005. LNCS, vol. 3655, pp. 178–206. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, April 2-6, 2001, pp. 421–430. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  13. 13.
    Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4), 427–466 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Craswell, N., de Vries, A., Soboroff, I.: Overview of the trec-2005 enterprise track. In: Proceedings of TREC 2005, Gaithersburg, USA (2005)Google Scholar
  15. 15.
    Craswell, N., Hawking, D., Vercoustre, A.-M., Wilkins, P.: Panoptic expert: Searching for experts not just for documents. In: Ausweb Poster Proceedings, Queensland, Australia (2001)Google Scholar
  16. 16.
    Davenport, T.: Knowledge Management at Microsoft. White paper (January 1997), http://www.itmweb.com/essay536.htm
  17. 17.
    Davenport, T.: Ten principles of knowledge management and four case studies. Knowledge and Process Management 4(3) (1998)Google Scholar
  18. 18.
    Evers, S., Fokkinga, M., Apers, P.M.G.: Probabilistic processing of interval-valued sensor data. In: Proceedings of DMSN 2008, 5th International Workshop on Data Management for Sensor Networks, To be held in conjunction with VLDB 2008, Auckland, New Zealand, August 24 (to appear, 2008), http://dmsn08.cs.umass.edu/
  19. 19.
    Fang, H., Zhai, C.: Probabilistic models for expert finding. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 418–430. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Johansson, C., Hall, P.A.V., Coquard, M.: ẗalk to paula and peter - they are experienced-̈ the experience engine in a nutshell. In: Ruhe, G., Bomarius, F. (eds.) SEKE 1999. LNCS, vol. 1756, pp. 171–185. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–322 (2002)Google Scholar
  22. 22.
    Koutrika, G., Ioannidis, Y.E.: Personalized queries under a generalized preference model. In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, Tokyo, Japan, 5-8 April 2005, pp. 841–852. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  23. 23.
    Liu, X., Croft, W.B., Koll, M.: Finding experts in community-based question-answering services. In: CIKM 2005: Proceedings of the 14th ACM international conference on Information and knowledge management, pp. 315–316. ACM Press, New York (2005)Google Scholar
  24. 24.
    Lu, W., Robertson, S., Macfarlane, A., Zhao, H.: Window-based Enterprise Expert Search. In: Proceedings of the 15th Text REtrieval Conference, TREC 2006 (2006)Google Scholar
  25. 25.
    Macdonald, C., Ounis, I.: Voting for candidates: adapting data fusion techniques for an expert search task. In: CIKM 2006: Proceedings of the 15th ACM international conference on Information and knowledge management, pp. 387–396 (2006)Google Scholar
  26. 26.
    Maybury, M.T.: Expert finding systems. Technical Report MTR06B000040, MITRE Corporation (2006)Google Scholar
  27. 27.
    McDonald, D.W., Ackerman, M.S.: Just talk to me: a field study of expertise location. In: CSCW 1998: Proceedings of the 1998 ACM conference on Computer supported cooperative work, pp. 315–324. ACM Press, New York (1998)CrossRefGoogle Scholar
  28. 28.
    Miller, S., Weckert, J.: Privacy, the workplace and the internet. Journal of Business Ethics 28(3), 255–265 (2000)CrossRefGoogle Scholar
  29. 29.
    Petkova, D., Croft, W.B.: Hierarchical language models for expert finding in enterprise corpora. In: ICTAI 2006: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, pp. 599–608 (2006)Google Scholar
  30. 30.
    Rudman, C.S.G., LLP, R.: The enron fraud (June 2008), http://www.enronfraud.com/
  31. 31.
    Serdyukov, P., Hiemstra, D.: Modeling documents as mixtures of persons for expert finding. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 309–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Serdyukov, P., Rode, H., Hiemsta, D.: Exploiting sequential dependencies for expert finding. In: SIGIR 2008: Proceedings of the 31th annual international ACM SIGIR conference on Research and development in information retrieval (2008)Google Scholar
  33. 33.
    Serdyukov, P., Rode, H., Hiemsta, D.: Modeling expert finding as an absorbing random walk. In: SIGIR 2008: Proceedings of the 31th annual international ACM SIGIR conference on Research and development in information retrieval (2008)Google Scholar
  34. 34.
    Serdyukov, P., Rode, H., Hiemstra, D.: Modeling multi-step relevance propagation for expert finding. In: CIKM 2008: Proceedings of the 17th ACM conference information and knowledge management (2008)Google Scholar
  35. 35.
    Soboroff, I., de Vries, A., Craswell, N.: Overview of the trec-2006 enterprise track. In: Proceedings of TREC 2006, Gaithersburg, USA (2006)Google Scholar
  36. 36.
    Stahlberg, P., Miklau, G., Levine, B.N.: Threats to privacy in the forensic analysis of database systems. In: SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pp. 91–102. ACM Press, New York (2007)CrossRefGoogle Scholar
  37. 37.
    van Bunningen, A.H., Fokkinga, M.M., Apers, P.M.G., Feng, L.: Ranking query results using context-aware preferences. In: First International Workshop on Ranking in Databases (DBRank 2007), Istanbul, Turkey, April 2007, pp. 269–276. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pavel Serdyukov
    • 1
  • Ling Feng
    • 2
  • Arthur van Bunningen
    • 3
  • Sander Evers
    • 1
  • Harold van Heerde
    • 1
  • Peter Apers
    • 1
  • Maarten Fokkinga
    • 1
  • Djoerd Hiemstra
    • 1
  1. 1.Database GroupUniversity of TwenteEnschedeThe Netherlands
  2. 2.Database group, Dept. of Computer Science and TechTsinghua UniversityChina
  3. 3.TeezirThe Netherlands

Personalised recommendations