Decidable and Undecidable Fragments of Halpern and Shoham’s Interval Temporal Logic: Towards a Complete Classification

  • Davide Bresolin
  • Dario Della Monica
  • Valentin Goranko
  • Angelo Montanari
  • Guido Sciavicco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5330)

Abstract

Interval temporal logics are based on temporal structures where time intervals, rather than time instants, are the primitive ontological entities. They employ modal operators corresponding to various relations between intervals, known as Allen’s relations. Technically, validity in interval temporal logics translates to dyadic second-order logic, thus explaining their complex computational behavior. The full modal logic of Allen’s relations, called HS, has been proved to be undecidable by Halpern and Shoham under very weak assumptions on the class of interval structures, and this result was discouraging attempts for practical applications and further research in the field. A renewed interest has been recently stimulated by the discovery of interesting decidable fragments of HS. This paper contributes to the characterization of the boundary between decidability and undecidability of HS fragments. It summarizes known positive and negative results, it describes the main techniques applied so far in both directions, and it establishes a number of new undecidability results for relatively small fragments of HS.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefMATHGoogle Scholar
  2. 2.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. In: Perspectives of Mathematical Logic. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based Decision Procedure for the Logic of Proper Subinterval Structures over Dense Orderings. In: Areces, C., Demri, S. (eds.) Proceedings of the 5th International Workshop on Methods for Modalities (M4M), pp. 335–351 (2007)Google Scholar
  4. 4.
    Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau systems for logics of subinterval structures over dense orderings. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 73–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision procedures for the logics of subinterval structures over dense orderings. In: Journal of Logic and Computation (to appear, 2008)Google Scholar
  6. 6.
    Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: On decidability and expressiveness of propositional interval neighborhood logics. In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 84–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional Interval Neighborhood Logics: Expressiveness, Decidability, and Undecidable Extensions. Annals of Pure and Applied Logic (to appear, 2008)Google Scholar
  8. 8.
    Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm for propositional neighborhood logic. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 549–560. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Optimal Tableaux for Right Propositional Neighborhood Logic over Linear Orders. In: JELIA 2008. LNCS (LNAI), vol. 5293, pp. 62–75. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for Right Propositional Neighborhood Logic. Journal of Automated Reasoning 38(1-3), 173–199 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Processing Letters 40(5), 269–276 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Formal Models and Semantics, vol. B, pp. 995–1072. MIT Press, Cambridge (1990)Google Scholar
  13. 13.
    Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)MathSciNetMATHGoogle Scholar
  14. 14.
    Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics and duration calculi. Journal of Applied Non-Classical Logics 14(1–2), 9–54 (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of the ACM 38(4), 935–962 (1991)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hodkinson, I., Montanari, A., Sciavicco, G.: Non-finite axiomatizability and undecidability of interval temporal logics with C, D, and T. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 308–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Krokhin, A.A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra. Journal of the ACM 50(5), 591–640 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lodaya, K.: Sharpening the undecidability of interval temporal logic. In: He, J., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 290–298. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Marx, M., Reynolds, M.: Undecidability of compass logic. Journal of Logic and Computation 9(6), 897–914 (1999)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Montanari, A., Sciavicco, G., Vitacolonna, N.: Decidability of interval temporal logics over split-frames via granularity. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS, vol. 2424, pp. 259–270. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept. of Computer Science, Stanford University, Stanford, CA (1983)Google Scholar
  22. 22.
    Otto, M.: Two variable first-order logic over ordered domains. Journal of Symbolic Logic 66(2), 685–702 (2001)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre Dame Journal of Formal Logic 31(4), 529–547 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Davide Bresolin
    • 1
  • Dario Della Monica
    • 2
  • Valentin Goranko
    • 3
  • Angelo Montanari
    • 2
  • Guido Sciavicco
    • 4
  1. 1.University of VeronaVeronaItaly
  2. 2.University of UdineUdineItaly
  3. 3.University of WitwatersrandJohannesburgSouth Africa
  4. 4.University of MurciaMurciaSpain

Personalised recommendations