Abstract

Quantified constraint satisfaction extends classical constraint satisfaction by a linear order of the variables and an associated existential or universal quantifier to each variable. In general, the semantics of the quantifiers does not allow to change the linear order of the variables arbitrarily without affecting the truth value of the instance. In this paper we investigate variable dependencies that are caused by the influence of the relative order between these variables on the truth value of the instance. Several approaches have been proposed in the literature for identifying such dependencies in the context of quantified Boolean formulas. We generalize these ideas to quantified constraint satisfaction and present new concepts that allow a refined analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayari, A., Basin, D.: Qubos: Deciding quantified Boolean logic using propositional satisfiability solvers. In: FMCAD 2002. LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Benedetti, M.: Quantifier trees for QBFS. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 378–385. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Benedetti, M.: sKizzo: A suite to evaluate and certify QBFS. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Biere, A.: Resolve and expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bordeaux, L., Cadoli, M., Mancini, T.: CSP properties for quantified constraints: Definitions and complexity. In: Proc. 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 360–365. AAAI Press, Menlo Park (2005)Google Scholar
  6. 6.
    Bordeaux, L., Zhang, L.: A solver for quantified Boolean and linear constraints. In: SAC 2007, pp. 321–325. ACM Press, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: Algorithms and complexity. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 58–70. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Chen, H.: Quantified constraint satisfaction and bounded treewidth. In: Proc. 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 161–165. IOS Press, Amsterdam (2004)Google Scholar
  10. 10.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)MATHGoogle Scholar
  11. 11.
    Egly, U., Tompits, H., Woltran, S.: On quantifier shifting for quantified Boolean formulas. In: Proc. SAT 2002 Workshop on Theory and Applications of Quantified Boolean Formulas, Informal Proceedings, pp. 48–61 (2002)Google Scholar
  12. 12.
    Gent, I.P., Nightingale, P., Stergiou, K.: QCSP-Solve: A solver for quantified constraint satisfaction problems. In: Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 138–143. Professional Book Center (2005)Google Scholar
  13. 13.
    Gottlob, G., Greco, G., Scarcello, F.: The complexity of quantified constraint satisfaction problems under structural restrictions. In: Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 150–155. Professional Book Center (2005)Google Scholar
  14. 14.
    Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 230–243. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM Journal of Computing 1(2), 146–160 (1972)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marko Samer
    • 1
  1. 1.Department of Computer ScienceTU DarmstadtGermany

Personalised recommendations