Nominal techniques are based on the idea of sets with a finitely-supported atoms-permutation action.

We consider the idea of nominal renaming sets, which are sets with a finitely-supported atoms-renaming action; renamings can identify atoms, permutations cannot. We show that nominal renaming sets exhibit many of the useful qualities found in (permutative) nominal sets; an elementary sets-based presentation, inductive datatypes of syntax up to binding, cartesian closure, and being a topos. Unlike is the case for nominal sets, the notion of names-abstraction coincides with functional abstraction. Thus we obtain a concrete presentation of sheaves on the category of finite sets in the form of a category of sets with structure.


Nominal renaming sets nominal sets abstract syntax with binding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for storage. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Brunner, N.: 75 years of independence proofs by Fraenkel-Mostowski permutation models. Mathematica Japonica 43, 177–199 (1996)MathSciNetMATHGoogle Scholar
  3. 3.
    Bucalo, A., Honsell, F., Miculan, M., Scagnetto, I., Hofmann, M.: Consistency of the theory of contexts. Journal of Functional Programming 16(3), 327–395 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Despeyroux, J.: A higher-order specification of the π–calculus. In: IFIP TCS, pp. 425–439 (2000)Google Scholar
  5. 5.
    Despeyroux, J., Felty, A.P., Hirschowitz, A.: Higher-order abstract syntax in COQ. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 124–138. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Despeyroux, J., Hirschowitz, A.: Higher-order abstract syntax with induction in COQ. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 159–173. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: LICS 1999, pp. 193–202. IEEE, Los Alamitos (1999)Google Scholar
  8. 8.
    Fiore, M.P., Staton, S.: A congruence rule format for name-passing process calculi from mathematical structural operational semantics. In: LICS 2006, pp. 49–58. IEEE, Los Alamitos (2006)Google Scholar
  9. 9.
    Gabbay, M.J.: A Theory of Inductive Definitions with alpha-Equivalence. PhD thesis, Cambridge, UK (2000)Google Scholar
  10. 10.
    Gabbay, M.J.: A General Mathematics of Names. Information and Computation 205, 982–1011 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gabbay, M.J.: Nominal renaming sets. Technical Report HW-MACS-TR-0058, Heriot-Watt University (2007), http://www.gabbay.org.uk/papers.html#nomrs-tr
  12. 12.
    Gabbay, M.J., Mathijssen, A.: Capture-avoiding Substitution as a Nominal Algebra. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 198–212. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Variable Binding (journal version). Formal Aspects of Computing 13(3–5), 341–363 (2001)MATHGoogle Scholar
  14. 14.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders. In: 14th Annual Symposium on Logic in Computer Science, pp. 214–224. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  15. 15.
    Hirschkoff, D.: A full formalization of pi-calculus theory in the Calculus of Constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: 14th Annual Symposium on Logic in Computer Science, pp. 204–213. IEEE, Los Alamitos (1999)Google Scholar
  17. 17.
    Honsell, F., Miculan, M., Scagnetto, I.: An axiomatic approach to metareasoning on nominal algebras in HOAS. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 963–978. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. Journal of Automated Reasoning 23(3-4), 373–409 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS, vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Shinwell, M.R.: The Fresh Approach: Functional Programming with Names and Binders. PhD thesis, Computer Laboratory, University of Cambridge (December 2004)Google Scholar
  21. 21.
    Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders made simple. In: ICFP 2003. SIGPLAN Not., vol. 38(9), pp. 263–274. ACM Press, New York (2003)Google Scholar
  22. 22.
    Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer Science 342(1), 28–55 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Shinwell, M.R., Pitts, A.M.: Fresh objective Caml user manual. Technical Report UCAM-CL-TR-621, University of Cambridge (2005)Google Scholar
  24. 24.
    Staton, S.: Name-passing process calculi: operational models and structural operational semantics. PhD thesis, University of Cambridge (2007)Google Scholar
  25. 25.
    Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 38–53. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Murdoch J. Gabbay
    • 1
  • Martin Hofmann
    • 2
  1. 1.UK
  2. 2.Germany

Personalised recommendations