Spatial Organization of the Chemical Paradigm and the Specification of Autonomic Systems

  • Jean-Louis Giavitto
  • Olivier Michel
  • Antoine Spicher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5380)


The chemical paradigm is an unconventional programming paradigm well fitted to the high-level specification of parallel systems. Based on the fixed point iterations of local rules, its use has been advocated for the programming of autonomic and amorphous systems. However, this model lacks an explicit handling of spatial relationships.

In this contribution, we first show how the chemical paradigm can be extended beyond multisets to arbitrary topological collections. Topological collections handle in a uniform way sophisticated data structures required in algorithmics as well as distributed data structures needed for the programming of autonomic or amorphous systems. Then we adapt a well-known result on multiset ordering to the more general case of topological collections. Well-founded ordering on topological collection can be used to prove the termination of the fixed point iteration of local rules.


Autonomic System Spatial Organization Cayley Graph Local Rule Autonomic Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAC+00]
    Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. CACM: Communications of the ACM 43 (2000)Google Scholar
  2. [ACD02]
    Arulanandham, J.J., Calude, C.S., Dinneen, M.J.: Bead-Sort: A natural sorting algorithm. EATCS Bull. 76, 153–162 (2002)MathSciNetzbMATHGoogle Scholar
  3. [BCM88]
    Banâtre, J.-P., Coutant, A., Le Metayer, D.: A parallel machine for multiset transformation and its programming style. Future Generation Computer Systems 4, 133–144 (1988)CrossRefGoogle Scholar
  4. [BDH+08]
    Brukman, O., Dolev, S., Haviv, Y., Lahiani, L., Kat, R., Schiller, E., Tzachar, N., Yagel, R.: Self-stabilization from theory to practice. Bulletin of the EATCS (94), 130–150 (2008)Google Scholar
  5. [BDHY07]
    Brukman, O., Dolev, S., Haviv, Y., Yagel, R.: Self-stabilization as a foundation for autonomic computing. In: Proc. of the Second IEEE International Conference on Availability, Reliability and Security (ARES 2007), Workshop on Foundation of Fault-tolerance Distributed Computing (FOFDC 2007), pp. 991–998. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  6. [BdR+06]
    Barbier de Reuille, P., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro, N., Godin, C., Traas, J.: Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. PNAS 103(5), 1627–1632 (2006)CrossRefGoogle Scholar
  7. [BL90]
    Banâtre, J.-P., Le Métayer, D.: The GAMMA model and its discipline of programming. Science of Computer Programming 15(1), 55–77 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [BRF04]
    Banâtre, J.-P., Radenac, Y., Fradet, P.: Chemical specification of autonomic systems. In: IASSE, pp. 72–79. ISCA (2004)Google Scholar
  9. [CiCL91]
    Chen, M., Il Choo, Y., Li, J.: Crystal: Theory and Pragmatics of Generating Efficient Parallel Code. In: Szymanski, B.K. (ed.) Parallel Functional Languages and Compilers. Frontier Series, vol. 7, pp. 255–308. ACM Press, New York (1991)Google Scholar
  10. [DJ90]
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical Computer Science, vol. B, pp. 244–320. Elsevier Science, Amsterdam (1990)Google Scholar
  11. [DM79]
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Communications of the Association for Computing Machinery 22, 465–476 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Gia03]
    Giavitto, J.-L.: Invited talk: Topological collections, transformations and their application to the modeling and the simulation of dynamical systems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. [GM01]
    Giavitto, J.-L., Michel, O.: Declarative definition of group indexed data structures and approximation of their domains. In: Proceedings of the 3nd International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP 2001). ACM Press, New York (2001)Google Scholar
  14. [GM02a]
    Giavitto, J.-L., Michel, O.: Data structure as topological spaces. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 137–150. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. [GM02b]
    Giavitto, J.-L., Michel, O.: The topological structures of membrane computing. Fundamenta Informaticae 49, 107–129 (2002)MathSciNetzbMATHGoogle Scholar
  16. [GS08]
    Giavitto, J.-L., Spicher, A.: Topological rewriting and the geometrization of programming. Physica D 237, 1302–1314 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Hen94]
    Henle, M.: A combinatorial introduction to topology. Dover publications, New-York (1994)zbMATHGoogle Scholar
  18. [Hor01]
    Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology. Technical report, IBM Research (October 2001),
  19. [IGE07]
    IGEM. Modeling a synthetic multicellular bacterium. Modeling page of the Paris team wiki at iGEM 2007 (2007),
  20. [KMW67]
    Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for uniform recurrence equations. Journal of the ACM 14(3), 563–590 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Kov01]
    Kovalevsky, V.: Algorithms and data structures for computer topology. In: Digital and image geometry: advanced lectures, pp. 38–58. Springer, New York (2001)CrossRefGoogle Scholar
  22. [Lie94]
    Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal on Computational Geometry and Applications 4(3), 275–324 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Lis93]
    Lisper, B.: On the relation between functional and data-parallel programming languages. In: Proc. of the 6th. Int. Conf. on Functional Languages and Computer Architectures. ACM Press, New York (1993)Google Scholar
  24. [Mic07]
    Michel, O.: There’s plenty of room for unconventional programming languages, or, declarative simulations of dynamical systems (with a dynamical structure). Habilitation Manuscript (December 2007),
  25. [Mun84]
    Munkres, J.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  26. [Pău02]
    Pǎun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)Google Scholar
  27. [PS93]
    Palmer, R.S., Shapiro, V.: Chain models of physical behavior for engineering analysis and design. In: Research in Engineering Design, vol. 5, pp. 161–184. Springer International, Heidelberg (1993)Google Scholar
  28. [RS92]
    Rozenberg, G., Salomaa, A. (eds.): Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics and Developmental Biology. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  29. [SH86]
    Steele, G.L., Hillis, D.: Connection machine LISP: Fine grained parallel symbolic programming. In: Proceedings of the 1986 ACM Conference on LISP and Functional Programming, pp. 279–297. ACM, New York (1986)CrossRefGoogle Scholar
  30. [SKHH06]
    Suhonen, J., Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Design, implementation, and experiments on outdoor deployment of wireless sensor network for environmental monitoring. In: Vassiliadis, S., Wong, S., Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 109–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. [SM05]
    Spicher, A., Michel, O.: Using rewriting techniques in the simulation of dynamical systems: Application to the modeling of sperm crawling. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 820–827. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. [SM07]
    Spicher, A., Michel, O.: Declarative modeling of a neurulation-like process. BioSystems 87(2-3), 281–288 (2007)CrossRefGoogle Scholar
  33. [SMC+08]
    Spicher, A., Michel, O., Cieslak, M., Giavitto, J.-L., Prusinkiewicz, P.: Stochastic p systems and the simulation of biochemical processes with dynamic compartments. BioSystems 91(3), 458–472 (2008)CrossRefGoogle Scholar
  34. [TM87]
    Toffoli, T., Margolus, N.: Cellular automata machines: a new environment for modeling. MIT Press, Cambridge (1987)zbMATHGoogle Scholar
  35. [Ton74]
    Tonti, E.: The algebraic-topological structure of physical theories. In: Glockner, P.G., Sing, M.C. (eds.) Symmetry, similarity and group theoretic methods in mechanics, Calgary, Canada, pp. 441–467 (August 1974)Google Scholar
  36. [Ton01]
    Tonti, E.: A direct discrete formulation of field laws: The cell method. Computer Modeling in Engineering & Sciences 2(2), 237–258 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jean-Louis Giavitto
    • 1
  • Olivier Michel
    • 1
    • 2
  • Antoine Spicher
    • 2
    • 3
  1. 1.IBISC FRE 3190 CNRS, Université d’Evry, GenopoleEvryFrance
  2. 2.LACL EA 4213 Université Paris 12 (Paris Est)CréteilFrance
  3. 3.LORIA UMR 7503 INRIA, CNRS, INPL, UHP, Nancy 2Vandoeuvre-lès-Nancy CedexFrance

Personalised recommendations