Augmented Privacy with Virtual Humans

  • Yang Cai
  • Iryna Pavlyshak
  • Joseph Laws
  • Ryan Magargle
  • James Hoburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4650)


Visual privacy is a sensitive subject because it literally deals with human private parts. It presents a bold challenge to the field of Computer Science. The goal of this study is to build a virtual human model for designing and evaluating visual privacy technologies before a security system is built. Given the available databases of anthropological models from CAESAR, 3D scanners and the physical parameters of human imaging systems, we simulate the scanning imagery data with the High Frequency Structure Simulator (HFSS). The proportion and template matching algorithms have been developed to find the human surface features from 3D scanning data. The concealed object detection algorithms are developed according to the wave intensity and surface characteristics. Then the privacy-aware rendering methods are evaluated by usability studies. This forward-thinking approach intends to transform the development of visual privacy technologies from device-specific and proprietary to device-independent and open source. It also advances privacy research from an ad-hoc problem-solving process to a systematic design process, enabling multi-disciplinary innovations in digital human modeling, computer vision, information visualization, and computational aesthetics.

The results of this study can be used in the privacy-aware imaging systems in airports and medical systems. They can also benefit the custom-fit products that are designed from personal 3D scanning data. Furthermore, our results can be used in the reconstruction of objects in digital archeology and medical imaging technologies such as virtual colonoscopy.


human body feature recognition 3D scan security privacy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laws, J., Cai, Y.: Feature Hiding in 3D Human Body Scans. Journal of Information Visualization 5(4) (2006),
  2. 2.
    Laws, J., Cai, Y.: A Privacy Algorithm for 3D Human Body Scans. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 870–877. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cai, Y., et al.: Spatiotemporal data mining for tracking ocean objects. In: Proceedings of IEEE Space Mission Challenges to IT, Pasadena, CA (2006)Google Scholar
  4. 4.
    Cai, Y., et al.: Visual Transform for spatiotemporal data mining. Journal of Knowledge and Information Systems (to appear, 2007)Google Scholar
  5. 5.
    BodySearch imaging system, American Science and Engineering, Inc., 829 Middlesex Turnpike, Billerica, MA 01821 Google Scholar
  6. 6.
    Secure 1000 imaging system, IRT Corporation, 6020 Cornerstone Court West, San Diego, CA 92121 Google Scholar
  7. 7.
    McMakin, D.L., Sheen, D.M., Collins, H.D., Hall, T.E., Severtsen, R.H.: Wideband, millimeter-wave, holographic surveillance systems. In: EUROPTO International Symposium on Law Enforcement Technologies: Identification Technologies and Traffic Safety, Munich, FRG, SPIE, vol. 2092, pp. 131–141 (1995)Google Scholar
  8. 8.
    Sheen, D.M., McMakin, D.L., Collins, H.D.: Circular scanned millimeter-wave imaging system for weapon detection. In: EUROPTO International Symposium on Law Enforcement Technologies: Identification Technologies and Traffic Safety, Munich, FRG, SPIE, vol. 2092, pp. 122–130 (1995)Google Scholar
  9. 9.
    McMakin, D.L., Sheen, D.M., Collins, H.D., Hall, T.E., Smith, R.R.: Millimeter-wave, high-resolution, holographic surveillance system. In: EUROPTO International Symposium on Substance Identification Technologies, Innsbruck, Austria, SPIE, vol. 2092, pp. 525–535 (1993)Google Scholar
  10. 10.
    Sheen, D.M., McMakin, D.L., Collins, H.D., Hall, T.E.: Weapon detection using a wideband millimeter-wave linear array imaging technique. In: EUROPTO International Symposium on Substance Identification Technologies, Innsbruck, Austria, SPIE, vol. 2092, pp. 536–547 (1993)Google Scholar
  11. 11.
    Huguenin, G.R., Goldsmith, P.F., Deo, N.C., Walker, D.K.: Contraband Detection System. U. S. Patent 5, 073, 782 (1991)Google Scholar
  12. 12.
    Browne, J.: MM waves aid commercial applications. Microwaves and RF, 113–116 (July 1992)Google Scholar
  13. 13.
    Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New YorkGoogle Scholar
  14. 14.
    Soumekh, M.: Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Transactions on Signal Processing 39(9), 2044–2055 (1991)CrossRefGoogle Scholar
  15. 15.
    Soumekh, M.: Fourier Array Imaging. Prentice-Hall, Englewood Cliffs (1994)MATHGoogle Scholar
  16. 16.
    Anthropometry Resource (CAESAR), Final Report, vol. I: Summary, AFRL-HE-WP-TR-2002-0169, United States Air Force Research Laboratory, Human Effectiveness Directorate, Crew System Interface Division, 2255 H Street, Wright-Patterson AFB OH 45433-7022 and SAE International, 400 Commonwealth Dr., Warrendale, PA 15096 Google Scholar
  17. 17.
    Bansal, M.: Analysis of curvature in genomic DNA,
  18. 18.
    Besl, P.J., Jain, R.C.: Three-dimensional object recognition. ACM Comput. Surveys 17(1), 75–145 (1985)CrossRefGoogle Scholar
  19. 19.
    Brady, M., Ponce, J., Yuille, A., Asada, H.: Describing surfaces. Comput. Vision, Graphics, Image Processing 32, 1–28 (1985)CrossRefMATHGoogle Scholar
  20. 20.
    Calladine, C.R.: Gaussian curvature and shell structures. The Mathematics of Surfaces, pp. 179–196. Oxford University Press, Oxford (1985)Google Scholar
  21. 21.
    Chen, H.H., Huang, T.S.: Maximal matching of two three-dimensional point sets. In: Proc. ICPR (October 1986)Google Scholar
  22. 22.
    Coleman, R., Burr, M., Souvaine, D., Cheng, A.: An intuitive approach to measuring protein surface curvature. Proteins: structure, function and bioinformatics 61(4), 1068–1074Google Scholar
  23. 23.
    Fan, T.G., Medioni, G., Nevatia, R.: Description of surfaces from range data using curvature properties. In: Proc. CVPR (May 1986)Google Scholar
  24. 24.
    Forsyth, D.A., Fleck, M.M.: Automatic detection of human nudes. International Journal of Computer Vision 32(1), 63–77 (1999)CrossRefGoogle Scholar
  25. 25.
    Forsyth, D.A., Fleck, M.M.: Body Plans. In: Proc. CVPR 1997, pp. 678–683 (1997)Google Scholar
  26. 26.
    Forsyth, D.A., Fleck, M.M.: Identifying nude pictures. In: Proceeding of Third IEEE Workshop on Applications of Computer Vision, pp. 103–108 (1996)Google Scholar
  27. 27.
    Goldgof, D.B., Huang, T.S., Lee, H.: Curvature based approach to terrain recognition. Coord. Sci. Lab., Univ. Illinois, Urbana-Champaign, Tech. Note ISP-910 (April 1989)Google Scholar
  28. 28.
    Goldgof, D.B., Huang, T.S., Lee, H.: Feature extraction and terrain matching. In: Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, Ann Arbor, MI (May 1988)Google Scholar
  29. 29.
    Goldgof, D.B., Huang, T.S., Lee, H.: A Curvature-Based Approach to Terrain Recognition  11(11), 1213–1217 (1989)Google Scholar
  30. 30.
    Gordon, G.: Face recognition based on depth and curvature features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, Illinois, pp. 108–110 (1992)Google Scholar
  31. 31.
    Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Machine Intell. PAMI 9(4), 532–550 (1987)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Jones, P.R.M., Rioux, M.: Three-dimensional surface anthropometry: applications to the human body. Optics and Lasers in Engineering 28, 89–117 (1997)CrossRefGoogle Scholar
  34. 34.
    Li, P., Corner, B.D., Paquette, S.: Evaluation of a surface curvature based landmark extraction method for three dimensional head scans. In: International Ergonomics Conference, Seoul (2003)Google Scholar
  35. 35.
    Liu, X., Kim, W., Drerup, B.: 3D Characterization and Localization of Anatomical Landmarks of the Foot. In: Proceeding (417), Biomedical Engineering. Acta Press (2004),
  36. 36.
    Fleck, M.M., Forsyth, D.A., Bregler, C.: Finding naked people. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 593–602. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  37. 37.
    Ratner, P.: 3-D human modeling and animation. John Wiley & Sons, Chichester (2003)Google Scholar
  38. 38.
    Robinette, K.M., Blackwell, S., Daanen, H.A.M., Fleming, S., Boehmer, M., Brill, T., Hoeferlin, D., Burnsides, D.: Civilian American and European Surface Anthropometry Resource (2002)Google Scholar
  39. 39.
    Ioffe, S., Forsyth, D.A.: Probabilistic methods for finding people. International Journal of Computer Vision 43(1), 45–68 (2001)CrossRefMATHGoogle Scholar
  40. 40.
    Sonka, M., et al.: Image processing, analysis and machine vision. PWS Publishing (1999)Google Scholar
  41. 41.
    Suikerbuik, C.A.M.: Automatic Feature Detection in 3D Human Body Scans. Master thesis INF/SCR-02-23, Institute of Information and Computer Sciences. Utrecht University (2002)Google Scholar
  42. 42.
    Suikerbuik, R., Tangelder, H., Daanen, H., Oudenhuijzen, A.: Automatic feature detection in 3D human body scans. In: Proceedings of SAE Digital Human Modeling Conference, 04-DHM-52 (2004)Google Scholar
  43. 43.
  44. 44.
  45. 45.
  46. 46.
    Post-Gazette News about Digital Museum Project,
  47. 47.
  48. 48.
    Neill, D.B., Moore, A.W.: Anomalous spatial cluster detection. In: Proc. KDD 2005 Workshop on Data Mining Methods for Anomaly Detection, pp. 41–44 (2005)Google Scholar
  49. 49.
    Neill, D.B., Moore, A.W.: Rapid detection of significant spatial clusters. In: Proc. 10th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 256–265 (2004)Google Scholar
  50. 50.
    Salvador, S., Chan, P.: Fastdtw: Toward accurate dynamic time warping in linear time and space. In: KDD Workshop on Mining Temporal and Sequential Data (2004)Google Scholar
  51. 51.
    Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., Chang, L.-W.: A novel anomaly detection scheme based on principal component classifier. In: Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop (2003)Google Scholar
  52. 52.
    Zhang, J., Zulkernine, M.: Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection. In: Symposium on Network Security and Information Assurance – Proc. of the IEEE International Conference on Communications (ICC), Istanbul, Turkey (June 2006)Google Scholar
  53. 53.
    Burbeck, K., Nadjm-Tehrani, S.: ADWICE: Anomaly Detection with Real-time Incremental Clustering. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506. Springer, Heidelberg (2005)Google Scholar
  54. 54.
    Gonzalez, D.D.: An Immuno-Fuzzy Approach to Anomaly Detection. In: The proceedings of the 12th IEEE International Conference on Fuzzy Systems (FUZZIEEE), May 25-28, vol. 2, pp. 1219–1224 (2003)Google Scholar
  55. 55.
    Wise, J.A., Thomas, J.J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: spatial analysis and interaction with information from text documents. In: Proceedings of the 1995 IEEE Symposium on Information Visualization, Atlanta, Georgia, October 30-31, p. 51 (1995)Google Scholar
  56. 56.
    Rosenfeld, R.: Digital straight line segments. IEEE Trans. On Computers 23, 1264–1269 (1974)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Oppenheim, A.V., et al.: Signals and Systems. Prentice-Hall, Englewood Cliffs (1983)MATHGoogle Scholar
  58. 58.
    Keller, P., McMkin, L., Sheen, D., McKinnon, A., Summet, A.J.: Privacy Algorithm for Cylindrical Holographic Weapons Surveillance Systems. In: Lee, J., Shim, J., Lee, S.-g., Bussler, C.J., Shim, S. (eds.) DEECS 2006. LNCS, vol. 4055, pp. 476–483. Springer, Heidelberg (2006)Google Scholar
  59. 59.
    Sheen, D.M., et al.: Concealed explosive detection on personnel using a wideband holographic millimeter-wave imaging system. In: AEROSENSE Conference, Proceedings of the SPIE, Orlando, FL, vol. 2755 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yang Cai
    • 1
  • Iryna Pavlyshak
    • 1
  • Joseph Laws
    • 1
  • Ryan Magargle
    • 2
  • James Hoburg
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Ansoft, Inc.PittsburghUSA

Personalised recommendations