ΩMEGA: Resource-Adaptive Processes in an Automated Reasoning System

  • Serge Autexier
  • Christoph Benzmüller
  • Dominik Dietrich
  • Jörg Siekmann
Chapter
Part of the Cognitive Technologies book series (COGTECH)

Abstract

The ΩMEGA project and its predecessor, the MKRP-system, grew out of the principal dissatisfaction with the methodology and lack of success of the search-based “logic engines” of the 1960s and 1970s.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The mathematical assistant system ΩMEGA (and its predecessor MKRP) evolved over a time span of more than 25 years: from its original conception at Karlsruhe in the years 1976 and after, the MKRP system became one of the strongest deduction systems at the time, racing against the succession of systems of Larry Wos and his associates for more than a decade with Christoph Walther at the helm of MKRP and later, when Christoph obtained his professorship, Norbert Eisinger took over. The paradigm shift to knowledge-based proof planning was carried out with Manfred Kerber as project leader to be succeeded by Michael Kohlhase, when Manfred became a lecturer in Britain.

The new ΩMEGA system was developed with Christoph Benzmüller as the last captain at the steering wheel before Serge Autexier now became the current project leader. All in all more than 50 research assistants worked with us on these developments over the time and their contributions are greatly acknowledged

References

  1. 1.
    Andrews, P., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H. TPS: A theorem proving system for classical type theory. Journal of Automated Reasoning 16(3):321–353 (1996).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Autexier, S. The CoRe calculus. In R. Nieuwenhuis, (Ed.), Proceedings of the 20th International Conference on Automated Deduction (CADE-20) (vol. 3632). LNAI, Tallinn, Estonia: Springer (2005).Google Scholar
  3. 3.
    Autexier, S., Dietrich, D. Synthesizing proof planning methods and oants agents from mathematical knowledge. In J. Borwein, B. Farmer, (Eds.), Proceedings of MKM’06 (vol. 4108, pp. 94–109). LNAI, London: Springer (2006).Google Scholar
  4. 4.
    Autexier, S., Hutter, D. Formal software development in MAYA. In D. Hutter, W. Stephan, (Eds.), Festschrift in Honor of J. Siekmann (vol. 2605). LNAI, Springer (2005).Google Scholar
  5. 5.
    Autexier, S., Sacerdoti-Coen, C. A formal correspondence between omdoc with alternative proofs and the lambdabarmumutilde-calculus. In J. Borwein, B. Farmer, (Eds.), Proceedings of MKM’06 (vol. 4108, pp. 67–81). LNAI, Springer (2006).Google Scholar
  6. 6.
    Autexier, S., Benzmüller, C., Dietrich, D., Meier, A., Wirth, C.P. A generic modular data structure for proof attempts alternating on ideas and granularity. In M. Kohlhase, (Ed.), Proceedings of the 5th International Conference on Mathematical Knowledge Management (MKM’05) (vol. 3863, pp. 126–142). LNAI, Springer (2006).Google Scholar
  7. 7.
    Autexier, S., Benzmüller, C., Dietrich, D., Wagner, M. Organisation, transformation, and propagation of mathematical knowledge in omega. Journal of Mathematics in Computer Science, 2(2):253–277 (2008).MATHCrossRefGoogle Scholar
  8. 8.
    Avenhaus, J., Kühler, U., Schmidt-Samoa, T., Wirth, C.P. How to prove inductive theorems? \QUODLIBET! In: Proceeding of the 19th International Conference on Automated Deduction (CADE-19) (pp. 328–333). Springer, no. 2741 in LNAI (2003).Google Scholar
  9. 9.
    Baumgartner, P., Furbach, U. PROTEIN, a PROver with a Theory INterface. In A. Bundy, (Ed.), Proceedings of the 12th Conference on Automated Deduction (pp. 769–773). Springer, no. 814 in LNAI, (1994).Google Scholar
  10. 10.
    Benzmüller, C. Equality and extensionality in higher-order theorem proving. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (1999).Google Scholar
  11. 11.
    Benzmüller, C., Kohlhase, M. LEO – a higher-order theorem prover. In C. Kirchner, H. Kirchner, (Eds.), Proceedings of the 15th International Conference on Automated Deduction (CADE-15) (pp. 139–143). Lindau, Germany: Springer, no. 1421 in LNAI (1998).Google Scholar
  12. 12.
    Benzmüller, C., Sorge, V. A blackboard architecture for guiding interactive proofs. In F. Giunchiglia, (Ed.), Proceedings of 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA’98). Springer, no. 1480 in LNAI (1998).Google Scholar
  13. 13.
    Benzmüller, C., Sorge, V. Critical agents supporting interactive theorem proving. In P. Borahona, J.J. Alferes, (Eds.), Proceedings of the 9th Portuguese Conference on Artificial Intelligence (EPIA’99) (pp. 208–221). Springer, Evora, Portugal, no. 1695 in LNAI (1999).Google Scholar
  14. 14.
    Benzmüller, C., Sorge, V. Ωants – An open approach at combining Interactive and Automated Theorem Proving. In M. Kerber, M. Kohlhase, (Eds.), 8th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus-2000), AK Peters (2000).Google Scholar
  15. 15.
    Benzmüller, C., Vo, Q. Mathematical domain reasoning tasks in natural language tutorial dialog on proofs. In M. Veloso, S. Kambhampati, (Eds.), Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05) (pp. 516–522). Pittsburgh, Pennsylvania, USA: AAAI Press/The MIT Press, (2005).Google Scholar
  16. 16.
    Benzmüller, C., Bishop, M., Sorge, V. Integrating TPS and ΩMEGA. Journal of Universal Computer Science, 5:188–207 (1999).Google Scholar
  17. 17.
    Benzmüller, C., Jamnik, M., Kerber, M., Sorge, V. Agent based mathematical reasoning. Electronic Notes in Theoretical Computer Science, Elsevier, 23(3):21–33 (1999).Google Scholar
  18. 18.
    Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I., Pinkal, M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M. Tutorial dialogs on mathematical proofs. In: Proceedings of IJCAI-03 Workshop on Knowledge Representation and Automated Reasoning for E-Learning Systems (pp. 12–22). Acapulco, Mexico (2003).Google Scholar
  19. 19.
    Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M. Can a higher-order and a first-order theorem prover cooperate? In F. Baader, A. Voronkov, (Eds.), Proceedings of the 11th International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR) (pp. 415–431). Springer, no. 3452 in LNAI (2005).Google Scholar
  20. 20.
    Benzmüller, C., Horacek, H., Lesourd, H., Kruijff-Korbayová, I., Schiller, M., Wolska, M. A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material. In: Proceedings of International Conference on Language Resources and Evaluation (LREC 2006). ELDA, Genova, Italy (2006).Google Scholar
  21. 21.
    Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M. Combined reasoning by automated cooperation. Journal of Applied Logic, 6(3):318–342 (2008).MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Bledsoe, W. Challenge problems in elementary calculus. Journal of Automated Reasoning, 6:341–359 (1990).MATHCrossRefGoogle Scholar
  23. 23.
    Buckley, M., Dietrich, D. Integrating task information into the dialogue context for natural language mathematics tutoring. In B. Medlock, D. Ó Séaghdha, (Eds.), Proceedings of the 10th Annual CLUK Research Colloquium, Cambridge, UK (2007).Google Scholar
  24. 24.
    Bundy, A. The use of explicit plans to guide inductive proofs. In E. Lusk, R.A. Overbeek (Ed.), Proceeding of the 9th conference on Automated Deducation no. 310 in LNCS (pp. 111–120). Argonne, Illinois, USA: Springer (1988).CrossRefGoogle Scholar
  25. 25.
    Bundy, A. A science of reasoning. In J.-L. Lasser, G. Plotkin (Eds.), Computational Logic: Essays in Honor of Alan Robinson (pp. 178–199). Cambridge, MA: MIT Press (1991).Google Scholar
  26. 26.
    Bundy, A. A critique of proof planning. In: Computational Logic: Logic Programming and Beyond (Kowalski Festschrift) (vol. 2408, pp. 160–177). LNAI, Springer (2002).Google Scholar
  27. 27.
    Bundy, A., van Harmelen, F., Horn, C., Smaill, A. The oyster-clam system. In M.E. Stickel, (Ed.), Proceedings of the 10th Conference on Automated Deduction (vol. 449, pp. 647–648). Springer Verlag, LNAI (1990).Google Scholar
  28. 28.
    Carbonell, J., Blythe, J., Etzioni, O., Gil, Y., Joseph, R., Kahn, D., Knoblock, C., Minton, S., Pérez, M.A., Reilly, S., Veloso, M., Wang, X. PRODIGY 4.0: The Manual and Tutorial. CMU Tech. Rep. CMU-CS-92-150, Carnegie Mellon University (1992).Google Scholar
  29. 29.
    Char, B., Geddes, K., Gonnet, G., Leong, B., Monagan, M., Watt, S. First Leaves: A Tutorial Introduction to Maple V. Springer, New York (1992).MATHGoogle Scholar
  30. 30.
    Cheikhrouhou, L., Sorge, V. PDS – a three-dimensional data structure for proof plans. In: Proceedings of the International Conference on Artificial and Computational Intelligence for Decision, Control and Automation in Engineering and Industrial Applications (ACIDCA’2000) (2000).Google Scholar
  31. 31.
    Colton, S. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations, Springer (2002).Google Scholar
  32. 32.
    de Nivelle, H. Bliksem 1.10 user manual. Tech. Rep., Max-Planck-Institut für Informatik (1999).Google Scholar
  33. 33.
    Dietrich, D. The task-layer of the ΩMEGA system. Diploma thesis, FR 6.2 Informatik, Universität des Saarlandes, Saarbrücken, Germany (2006).Google Scholar
  34. 34.
    Dietrich, D., Buckley, M. Verification of proof steps for tutoring mathematical proofs. In R. Luckin, K.R. Koedinger, J. Greer, (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (vol. 158, pp. 560–562). Los Angeles, USA: IOS Press (2007).Google Scholar
  35. 35.
    Dijkstra, E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271 (1959).MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Eisinger, N., Siekmann, J., Smolka, G., Unvericht, E., Walther, C. The markgraf karl refutation procedure. In: Proceedings of the Conference of the European Society for Artificial Intelligence and Simulation of Behavior. Amsterdam, Netherlands (1980).Google Scholar
  37. 37.
    Erol, K., Hendler, J., Nau, D. Semantics for hierarchical task network planning. Tech. Rep. CS-TR-3239, UMIACS-TR-94-31, Computer Science Department, University of Maryland (1994).Google Scholar
  38. 38.
    Fiedler, A. Using a cognitive architecture to plan dialogs for the adaptive explanation of proofs. In Dean, T. (Ed.), Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 358–363). Morgan Kaufmann, Stockholm, Sweden (1999).Google Scholar
  39. 39.
    Fiedler, A. Dialog-driven adaptation of explanations of proofs. In B. Nebel, (Ed.), Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1259–1300). Morgan Kaufmann, Seattle, WA (2001).Google Scholar
  40. 40.
    Fiedler, A. User-adaptive proof explanation. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2001).Google Scholar
  41. 41.
    Franke, A., Kohlhase, M. System description: MathWeb, an agent-based communication layer for distributed automated theorem proving. In H. Ganzinger, (Ed.), Proceedings of the 16th conference on Automated Deduction, no. 1632 in LNAI, Springer (1999).Google Scholar
  42. 42.
    Ganzinger, H. (Ed.), Proceedings of the 16th Conference on Automated Deduction, no. 1632 in LNAI, Springer (1999).Google Scholar
  43. 43.
    Gentzen, G. The Collected Papers of Gerhard Gentzen (1934–1938). In: Szabo, M. E (ed), North Holland, Amsterdam (1969).Google Scholar
  44. 44.
    Hayes, P., Anderson, D.B. An arraignment of theorem-proving; or, the logician’s folly. Tech. Rep. Memo 54, Dept. Computational Logic. Edinburgh University (1972).Google Scholar
  45. 45.
    Hewitt, C. Description and theoretical analysis (using schemata) of planner: A language for proving theorems and manipulating models in a robot. Tech. Rep. AITR-258, MIT (1972).Google Scholar
  46. 46.
    Hillenbrand, T., Jaeger, A., Löchner, B. System description: Waldmeister — improvements in performance and ease of use. In Ganzinger, H. (Ed.), Proceedings of the 16th conference on Automated Deduction (pp. 232–236). no. 1632 in LNAI, Springer (1999).CrossRefGoogle Scholar
  47. 47.
    Huang, X. Human Oriented Proof Presentation: A Reconstructive Approach. No. 112 in DISKI, Infix, Sankt Augustin, Germany (1996).Google Scholar
  48. 48.
    Hutter, D. Management of change in structured verification. In: Proceedings of Automated Software Engineering, ASE-2000, IEEE (2000).Google Scholar
  49. 49.
    Hutter, D., Stephan, W. (Eds.). Festschrift in Honor of J. Siekmann, LNAI, vol. 2605, Springer (2005).Google Scholar
  50. 50.
    Jamnik, M., Kerber, M., Pollet, M., Benzmüller, C. Automatic learning of proof methods in proof planning. The Logic Journal of the IGPL, 11(6):647–674 (2003).MATHCrossRefGoogle Scholar
  51. 51.
    Kirchner, H., Ringeissen, C. (Eds.). Frontiers of combining systems: Third International Workshop, FroCoS 2000 (vol. 1794). LNAI, Springer (2000).Google Scholar
  52. 52.
    Kohlhase, M. OMDOC – An Open Markup Format for Mathematical Documents [Version 1.2] (vol. 4180). LNAI, Springer (2006).Google Scholar
  53. 53.
    Lingenfelder, C. Structuring computer generated proofs. In: Proceedings of the International Joint Conference on AI (IJCAI’89) (pp. 378–383) (1989).Google Scholar
  54. 54.
    Lingenfelder, C. Transformation and structuring of computer generated proofs. Doctoral thesis, University of Kaiserslautern, Department of Computer Science (1990).Google Scholar
  55. 55.
    Lusk, E., Overbeek, R. (Eds.). Proceedings of the 9th Conference on Automated Deduction, no. 310 in LNCS, Springer, Argonne, Illinois, USA (1988).Google Scholar
  56. 56.
    Manthey, R., Bry, F. SATCHMO: A theorem prover implemented in Prolog. In E. Lusk, R. Overbreek, (Eds.), Proceedings of the 9th conference on Automated Deduction (pp. 415–434), no. 310 in LNCS, Springer, Argonne, Illinois, USA (1988).CrossRefGoogle Scholar
  57. 57.
    McCasland, R., Bundy, A. MATHsAiD: a mathematical theorem discovery tool. In: Proceedings of SYNASC’06 (pp. 17–22). IEEE Computer Society Press (2006).Google Scholar
  58. 58.
    McCasland, R., Bundy, A., Smith, P. Ascertaining mathematical theorems. Electronic Notes in Theoretical Computer Science, 151(1):21–38, Proceedings of the 12th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus 2005) (2006).Google Scholar
  59. 59.
    McCune, W.W. Otter 3.0 reference manual and guide. Tech. Rep. ANL-94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA (1994).Google Scholar
  60. 60.
    McCune, W. Solution of the Robbins problem. Journal of Automated Reasoning, 19(3):263–276 (1997).MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Meier, A. TRAMP: Transformation of machine-found proofs into natural deduction proofs at the assertion level. In D. McAllester, (Ed.), Proceedings of the 17th Conference on Automated Deduction, Springer, no. 1831 in LNAI (2000).Google Scholar
  62. 62.
    Meier, A. Proof planning with multiple strategies. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2004).Google Scholar
  63. 63.
    Meier, A., Melis, E. MULTI: A multi-strategy proof planner (system description). In R. Nieuwenhuis, (Ed.), Proceedings of the 20th Conference on Automated Deduction (CADE-20) (vol. 3632, pp. 250–254). LNAI, Tallinn, Estonia: Springer (2005).Google Scholar
  64. 64.
    Meier, A., Melis, E., Pollet, M. Towards extending domain representations. Seki Report SR-02-01, Department of Computer Science, Saarland University, Saarbrücken, Germany (2002).Google Scholar
  65. 65.
    Meier, A., Pollet, M., Sorge, V. Comparing approaches to the exploration of the domain of residue classes. Journal of Symbolic Computation Special Issue on the Integration of Automated Reasoning and Computer Algebra Systems, 34:287–306 (2002).MathSciNetMATHGoogle Scholar
  66. 66.
    Melis, E., Meier, A. Proof planning with multiple strategies. In J. Loyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagivand, P. Stuckey, (Eds.), First International Conference on Computational Logic (CL-2000) (pp. 644–659), no. 1861 in LNAI. London, UK: Springer (2000).Google Scholar
  67. 67.
    Melis, E., Siekmann, J. Knowledge-based proof planning. Artificial Intelligence, 115(1):65–105 (1999).MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Melis, E., Siekmann, J. Activemath: An intelligent tutoring system for mathematics. In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, L. Zadeh, (Eds.), Seventh International Conference ‘Artificial Intelligence and Soft Computing’ (ICAISC) (vol. 3070, pp. 91–101), LNAI. Zakopane, Poland: Springer-Verlag (2004).Google Scholar
  69. 69.
    Melis, E., Zimmer, J., Müller, T. Integrating constraint solving into proof planning. In H. Kirchner, C. Ringeissen, (Eds.), Frontiers of combining systems: Third International Workshop, Frocos 2000 (vol. 1794), LNAI. Springer (2000).Google Scholar
  70. 70.
    Melis, E., Meier, A., Siekmann, J. Proof planning with multiple strategies. Artificial Intelligence, 172(6–7):656–684 (2007).MathSciNetGoogle Scholar
  71. 71.
    Riazanov, A., Voronkov, A. Vampire 1.1 (system description). In R. Goré, A. Leitsch, T. Nipkow, (Eds.), Automated Reasoning — 1st International Joint Conference, IJCAR 2001, no. 2083 in LNAI, Springer (2001).Google Scholar
  72. 72.
    Schönert, M., et al. GAP – Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1995).Google Scholar
  73. 73.
    Siekmann, J., Hess, S., Benzmüller, C., Cheikhrouhou, L., Fiedler, A., Horacek, H., Kohlhase, M., Konrad, K., Meier, A., Melis, E., Pollet, M., Sorge, V. LOUI: Lovely Ωmega User Interface. Formal Aspects of Computing, 11:326–342 (1999).CrossRefGoogle Scholar
  74. 74.
    Siekmann, J., Benzmüller, C., Brezhnev, V., Cheikhrouhou, L., Fiedler, A., Franke, A., Horacek, H., Kohlhase, M., Meier, A., Melis, E., Moschner, M., Normann, I., Pollet, M., Sorge, V., Ullrich, C., Wirth, C.P., Zimmer, J. Proof development with ΩMEGA. In A. Voronkov, (Ed.), Proceedings of the 18th International conference on Automated Deduction (pp. 143–148), no. 2392 in LNAI, Springer (2002).Google Scholar
  75. 75.
    Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Pollet, M. Proof development with OMEGA: Sqrt(2) is irrational. In M. Baaz, A. Voronkov, (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning, 9th International Conference, LPAR 2002 (pp. 367–387) no. 2514 in LNAI Springer (2002).CrossRefGoogle Scholar
  76. 76.
    Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M. Proof development in OMEGA: The irrationality of square root of 2. In F. Kamareddine, (Ed.), Thirty Five Years of Automating Mathematics (pp. 271–314), Kluwer Applied Logic series (28), Dordrecht, Boston: Kluwer Academic Publishers, ISBN 1-4020-1656-5 (2003).Google Scholar
  77. 77.
    Siekmann, J., Autexier, S., Fiedler, A., Gabbay, D., Huang, X. (to appear) Proof presentation, In: Principia Mathematica MechanicoGoogle Scholar
  78. 78.
    Sorge, V. Non-Trivial Computations in Proof Planning. In H. Kirchner, C. Ringeissen, (Eds.), Frontiers of Combining Systems: Third International Workshop, Frocos 2000 (vol. 1794), LNAI, Springer (2000).Google Scholar
  79. 79.
    Sorge, V. ΩANTS — a blackboard architecture for the integration of reasoning techniques into proof planning. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2001).Google Scholar
  80. 80.
    Sutcliffe, G., Zimmer, J., Schulz, S. Tstp data-exchange formats for automated Theorem proving tools. In W. Zhang, V. Sorge, (Eds.), Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems (pp. 201–215) Amsterdam: IOS press (2004).Google Scholar
  81. 81.
    van der Hoeven, J. GNU TeXmacs: A free, structured, wysiwyg and technical text editor. In: Actes du congrès Gutenberg, Metz, no. 39–40 in Actes du congrès Gutenberg (pp. 39–50) (2001).Google Scholar
  82. 82.
    Voronkov, A. (Ed.). Proceedings of the 18th International Conference on Automated Deduction, no. 2392 in LNAI, Springer (2002).Google Scholar
  83. 83.
    Wagner, M. Mediation between text-editors and proof assistance systems. Diploma thesis, Saarland University, Saarbrücken, Germany (2006).Google Scholar
  84. 84.
    Wagner, M., Autexier, S., Benzmüller, C. Plato: A mediator between text-editors and proof assistance systems. In Autexier, S., Benzmüller, C. (Eds.), 7th Workshop on User Interfaces for Theorem Provers (UITP’06), Elsevier, ENTCS (2006).Google Scholar
  85. 85.
    Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt, C., Topic, D. System description: SPASS version 1.0.0. In H. Ganzinger, (Ed.), Proceedings of the 16th conference on Automated Deduction pp. 378–382, no. 1632 in LNAI, Springer, (1999).CrossRefGoogle Scholar
  86. 86.
    Wiedijk, F. Formal proof sketches. In S. Berardi, M. Coppo, F. Damiani, (Eds.), Types for Proofs and Programs: Third International Workshop, TYPES 2003 (pp. 378–393), LNCS 3085. Torino, Italy: Springer (2004).Google Scholar
  87. 87.
    Wirth, C.P. Descente infinie + Deduction. Logic Journal of the IGPL, 12(1):1–96 (2004).MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Zhang, J., Zhang, H. SEM: A system for enumerating models. In C.S. Mellish, (Ed.), Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 298–303). San Mateo, California, USA, Montreal, Canada: Morgan Kaufmann (1995).Google Scholar
  89. 89.
    Zimmer, J. MATHSERVE – a framework for semantic reasoning services. PhD thesis, FR 6.2 Informatik, Universität des Saarlandes, Saarbrücken, Germany (2008).Google Scholar
  90. 90.
    Zimmer, J., Autexier, S. The mathserve framework for semantic reasoning web services. In U. Furbach, N. Shankar, (Eds.), Proceedings of IJCAR’06 (pp. 140–144), LNAI. Seattle, USA: Springer (2006).Google Scholar
  91. 91.
    Zimmer, J., Kohlhase, M. System description: The mathweb software bus for distributed mathematical reasoning. In A. Voronkov, (Ed.), Proceedings of the 18th International conference on Automated Deduction (pp. 138–142), no. 2392 in LNAI, Springer (2002).Google Scholar
  92. 92.
    Zimmer, J., Melis, E. Constraint solving for proof planning. Journal of Automated Reasoning, 33:51–88 (2004).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Serge Autexier
    • 1
  • Christoph Benzmüller
    • 2
  • Dominik Dietrich
    • 2
  • Jörg Siekmann
    • 1
  1. 1.DFKI GmbH and Saarland UniversitySaarbrückenGermany
  2. 2.Department of Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations